Einleitung

Die Schaltungstechnik hat sich wegen der stürmischen Entwicklung der Mikroelektronik in den letzten drei Jahrzehnten sehr stark gewandelt. Während früher fast alle Aufgaben mit analogen Transistorschaltungen erledigt wurden, werden heute die meisten Aufgaben mit hochintegrierten Digitalschaltungen (Mikroprozessor, Mikrocontroler, DSP, PLD, Interfacebausteine) und entsprechender Software gelöst. Dementsprechend liegt der Schwerpunkt der Elektronik-Ausbildung heute auf der Softwareentwicklung für diese Bausteine.

Geblieben sind der analogen Schaltungstechnik folgende Grundaufgaben:

- Stromversorgungsschaltungen
- Signaltransport auf physikalischer Ebene (Signalintegrität, EMV)
- Signalverstärkung (möglichst rauscharm)
- AD-Wandlung, DA-Wandlung
- Signalausgabe (Leistungsendstufen für Audio und Video, Stellglieder)
- Filter (Antialiasing, Glättung)
- HF-Schaltungen (Sender, Empfänger, Mischer, Filter)

Auch bei diesen Grundaufgaben werden jedoch hauptsächlich analoge integrierte Schaltungen (Spannungsregler, Operationsverstärker, ADC, DAC, Filterbausteine, HF-Bausteine) eingesetzt. Die meisten Elektronik-Entwickler werden im Laufe ihres Berufslebens nicht mit der Aufgabe konfrontiert, eine integrierte Schaltung selbst entwickeln zu müssen. Deshalb ist es gerechtfertigt, die Schaltungstechnik im Hauptstudium auf die Lösung der Grundaufgaben mit vorhandenen integrierten Schaltungen zu beschränken und die IC-Entwicklung in Spezialvorlesungen des Schwerpunktes Mikroelektronik zu verlagern.

Gliederung

- 1 Elektronische Schaltungen auf Leiterplatten
- 1.1 Herstellung
- 1.2 Layout
- 1.2.1 Spannungsversorgung
- 1.2.2 Signalintegrität
- 1.3 Zuverlässigkeit
- 1.3.1 Fehlerwahrscheinlichkeit
- 1.3.2 Ausfallwahrscheinlichkeit
- 1.4 Derating
- 1.4.1 Safe Operating Area
- 1.4.2 Maximale Verlustleistung beim Betrieb ohne Kühlkörper
- 1.4.3 Maximale Verlustleistung beim Betrieb mit Kühlkörper
- 1.4.4 Maximale Verlustleistung bei Impulsbelastung
- 2 Leistungs-Schaltungen
- 2.1 Transistorkenngrößen
- 2.1.1 Bipolar-Leistungstransistor
- 2.1.2 Leistungs-MOSFET
- 2.2 Lineare Leistungsverstärker
- 2.2.1 Emitter- und Sourcefolger im A-Betrieb
- 2.2.2 Komplementärer Emitter- und Sourcefolger im B-Betrieb
- 2.2.3 Komplementärer Emitter- und Sourcefolger im AB-Betrieb
- 2.3 Lineare Spannungsregler
- 2.4 Schaltregler
- 2.5 Schaltverstärker
- 3 Operationsverstärker-Schaltungen
- 3.1 Frequenzverhalten und Einschwingverhalten
- 3.1.1 Frequenzgang
- 3.1.2 Bode-Diagramm
- 3.1.3 Übertragungsfunktion
- 3.2 Kenngrößen eines Operationsverstärkers
- 3.3 Gegenkopplung
- 3.3.1 Prinzip
- 3.3.2 Kleinsignal-Bandbreite
- 3.3.3 Anstiegsgeschwindigkeit (Slewrate)
- 3.3.4 Verallgemeinertes Gegenkopplungsmodell

- 3.4 Frequenzgangkorrektur
- 3.4.1 Stabilität
- 3.4.2 Universelle Frequenzgangkorrektur
- 3.4.3 Partielle Frequenzgangkorrektur
- 3.4.4 Externe Kompensation einer kapazitiven Last
- 3.4.5 Transimpedanzverstärker
- 3.5 Gegengekoppelte Schaltungen
- 3.5.1 I/U-Wandler
- 3.5.2 Umkehrverstärker
- 3.5.3 Addierer
- 3.5.4 Subtrahierer (Differenzverstärker)
- 3.5.5 U/I-Wandler für Verbraucher an Masse und für große Ausgangsströme
- 3.5.6 Integrator
- 3.5.7 Differentiator
- 3.5.8 Analoger PID-Regler
- 3.6 Analog-Schalter
- 3.7 Mitgekoppelte Schaltungen
- 3.7.1 Komparator
- 3.7.2 Nichtinvertierender Schmitt-Trigger
- 3.7.3 Invertierender Schmitt-Trigger
- 3.7.4 Präzisions-Schmitt-Trigger
- 3.8 Rauschen in OPV-Schaltungen
- 4 Filter
- 4.1 Tiefpass-Filtercharakteristiken
- 4.2 Weitere Filtertypen
- 4.2.1 Hochpass
- 4.2.2 Bandpass
- 4.2.3 Bandsperre
- 4.2.4 Allpass
- 4.3 Filterschaltungen
- 4.3.1 Übersicht
- 4.3.2 Passive RC- und LC-Filterschaltungen
- 4.3.3 Aktive RC-Filter
- 4.3.4 Integrierte RC-Universalfilter
- 4.4 Ablauf einer Filterdimensionierung
- 5 Oszillatoren
- 5.1 RC-Oszillatoren
- 5.2 LC-Oszillatoren

Literaturhinweise

Meier/Nerreter: Analoge Schaltungen Hanser-Verlag, 1997, EUR 24,90 sehr gut zum Vorlesungsstoff passend; mit vielen Beispielen

Tietze/Schenk: Halbleiterschaltungstechnik Springer-Verlag, 1999, 11. Auflage, ca. EUR 75,00 Standardwerk, das weit über Vorlesungsstoff hinausgeht

Seifart: Analoge Schaltungen Verlag Technik, 1990, ca. EUR 32,00 Standardwerk, das weit über Vorlesungsstoff hinausgeht

Horowitz/Hill: The Art of Electronics Cambridge University Press, 1994, ca. EUR 60,00 Standardwerk, das weit über Vorlesungsstoff hinausgeht

Böhmer: Elemente der angewandten Elektronik Vieweg-Verlag, 2002, EUR 31,00 sehr praxisnahe Darstellung wichtiger Grundschaltungen

Schramm: Entwurf und Herstellung gedruckter Schaltungen Elektor-Verlag, 1997, ca. EUR 15,00 Leiterplatten-Layout mit Eagle

Heinemann: PSPICE Hanser-Verlag, 2001, EUR 29,90 Elektronik-Simulation mit PSPICE

Lindner/Brauer/Lehmann: Taschenbuch der Elektrotechnik und Elektronik Fachbuchverlag Leipzig, 1999, EUR 18,00 Formelsammlung und Tabellenwerk

Brauer/Lehmann: Elektronik-Aufgaben, Band I und II Fachbuchverlag Leipzig, 1997, je EUR 12,90 Übungsaufgaben mit Lösungen

Koß/Reinhold: Lehr- und Übungsbuch Elektronik Fachbuchverlag Leipzig, 2000, EUR 24,90 Wiederholung des Stoffes, Übungsaufgaben mit Lösungen

Deitert/Vogel: Analogtechnik multimedial Fachbuchverlag Leipzig, 2001, EUR 24,90 Lernprogramm mit interaktiven Übungen und PSpice-Simulationen

Verwendete Bezeichnungen

<u>A</u> B		Spannungsverstärkung Stromverstärkung		
В		Bandbreite, Blindleitwert		
β		Kleinsignal-Stromverstärkun	g	
f =	: 1/T	Frequenz		
fg		3dB-Grenzfrequenz (a	auch $\omega_g = 2\pi f_g$)	
fp		Polfrequenz, Eckfrequenz	(auch $\omega_p = 2\pi f_p$)	
f _T		Transitfrequenz (auch o	$\omega_{\rm T} = 2\pi f_{\rm T}$)	
g		Schleifenverstärkung		
G		Leitwert	ofunction	
<u> </u>	⊓ Μlul	Frequenzgang, Obertragung		
1, 1 k	, Ι, Φi, Ιeff, Ι	SS Kenngroben eines Strong	es (s. del O)	
<u>n</u>		Polaüte		
R		ohmscher Widerstand		
r		differentieller Widerstand		
S		Kleinsignal-Steilheit		
S =	= σ + jω	komplexe Kreisfrequenz		
ŝ	$=\frac{s}{\omega_{g}}$	normierte komplexe Kreisfre	quenz	
t	0	Zeit		
τ		Zeitkonstante		
Т		Periodendauer, absolute Ter	nperatur	
U		langsam zeitabhängige (qua	sistationare) Spannung einschl. Gle	ichsp.
u î		Momentanwert einer wechs	eispannung onne Gieichanteil	
0		Phase siner sinusförmigen	Nachaolononnung	
Ψu		Effektive wert einer Mashaeler		
	eff	Ellektivwert einer wechsels	Jannung	
Ug	SS	Spitze-Spitze-wert einer we	cnseispannung	
Ut)	Betriebsspannung		
U	-	I emperaturspannung k _B I/e	\approx 25mV bei Raumtemperatur	
X V		Admittanz		
<u>+</u> 7		Impedanz		
<u>←</u> ω	= 2πf	Kreisfrequenz		
	///			
In	dizes:		Komplexe Größen:	
а	Ausgangs	-	<u>U</u> komplexe Größe	
b	Betriebs-		<u> U</u> Betrag der komplexen Größe	
е	Eingangs-		$ \underline{U} _{dB} = 20 \underline{g} \underline{U} $ Betrag in dB	
 	Durchnum		<u>VU</u> Phase der komplexen Größe	
K I	un gegeng	jekoppellen zustand	Rochonzoichon:	
с С	Laol- hai Laarla	uf(I - 0)	\sim proportional	
n N			≈ ungefähr gleich	
Ч с	hei Kurzen	$hlu\beta (II = 0)$	$// B_1//B_2 = B_1 B_2/(B_1 + B_2)$	
5			5	TW 13.03.05 ST_0

1 Elektronische Schaltungen auf Leiterplatten

1.1 Herstellung

Elektronische Schaltungen werden als sog. Baugruppen aus Bauelementen zusammengebaut. Mehrere Baugruppen werden zu einem Gerät zusammengefügt, das wiederum Bestandteil einer Anlage sein kann:

Hierarchieebene	Beispiel			
Anlage	Klimaanlage			
Geräte	Computer, Steuergeräte für Raumheizung, Lüftung, Jalousien, etc.			
Baugruppen	Netzteil, Interfacekarte, Graphikkarte, Motherboard, Regler, Motorsteuerung, etc.			
Bauelemente	Schalter, Stecker, Widerstand, Relais, Transistor, Mikroprozessor, Speicher, etc.			

Die mechanische Befestigung und die elektrischen Verbindungen zwischen den Bauelementen einer Baugruppe werden durch eine sog. Leiterplatte (Platine, Karte) (engl. Printed Circuit Board (PCB)) bewerkstelligt. Der Begriff gedruckte Schaltung ist historisch bedingt, da früher die Leiterbahnen mit Siebdrucktechnik aufgebracht wurden. Heute verwendet man das wesentlich genauere fotolithografische Verfahren. Die einzelnen Baugruppen eines Gerätes werden bei industriellen Anwendungen in Einschüben befestigt und über eine Verkabelung oder eine Backplane miteinander verbunden. Bei Konsumer-Anwendungen muss die Befestigung und Verkabelung der Baugruppen dem Design angepasst werden.

Die Bauelemente werden in Massenfertigung von spezialisierten Herstellern produziert und nur bei großen Mengen direkt an den Endverbraucher verkauft, sonst über sogenannte Distributoren, z.B. Bürklin, RS Components, Farnell, usw.

Bauelemente gibt es in zwei unterschiedlichen Technologien:

- bedrahtete Bauelemente (für billige Leiterplatten, für schwere Baulemente, z.B. Trafo oder für Bauelemente mit Zugbelastung, z.B. Stecker, Buchsen, Schalter)
- SMD's (Surface Mount Devices) mit sehr kompakten Maßen oder mit vielen Anschlüssen

Viele passive Bauelemente mit einem charakteristischen Wert (Widerstände, Kondensatoren, Spulen, etc.), werden nicht mit jedem beliebigen Wert hergestellt, sondern nur mit Werten aus sog. Normwertreihen.

Die Verfügbarkeit der Bauelemente muss vor Beginn der Entwicklung geklärt werden, da Bauelemente kurzfristig vom Hersteller abgekündigt werden können und Lieferfristen für verschiedene Kunden unterschiedlich und zum Teil sehr lang sein können.

Die Leiterplatte wird in der Regel von spezialisierten Firmen hergestellt, mit Bauelementen bestückt und gelötet. Eine Leiterplatte besteht im einfachsten Fall aus einem Isolierstoff mit ein- oder zweiseitiger Kupferkaschierung. Ein häufig verwendeter Isolierstoff ist ein Epoxid-Glashartgewebe (FR4). Es werden aber auch billigere (Papier) und teurere (Keramik) Isolierstoffe verwendet. Die Dicke der Kupferkaschierung beträgt standardmäßig 17µm oder 35µm. Die Gesamtdicke der Leiterplatte beträgt aus Stabilitätsgründen ca. 1.5mm. Eine häufig verwendete Größe ist die sog. Europakarte mit 160mmx100mm

Einlagige Leiterplatte:	billigste Variante für bedrahtete Bauelemente

- Zweilagige Leiterplatte: nächstteurere Variante für SMD's, Verbindung der beiden Lagen über sog. Durchkontaktierungen (Via's), die durch Bohren und Galvanisieren hergestellt werden
- Mehrlagige Leiterplatten: teuerste Variante für Bauelemente mit sehr vielen Anschlüssen (Prozessoren, Controller, Speicher) Durchkontaktierungen können über alle Ebenen führen, nur bis zu einer bestimmten Tiefe (blind via) oder nur zwischen Innenlagen (buried via), die einzelnen Lagen werden getrennt hergestellt und danach verklebt

Die Bauelemente werden bei kleinen Stückzahlen von Hand und bei größeren Stückzahlen durch Bestückungsautomaten auf die Leiterplatten geklebt. Danach werden die Bauelemente in einer Lötanlage durch Reflow-Löten oder Wellen-Löten mit der Leiterplatte verlötet.

1.2 Layout

Für die Fertigung der Leiterplatten benötigt der Leiterplattenhersteller vom Gerätehersteller ein vollständiges Layout. Dieses Layout wird mit sog. Layout-Tools hergestellt. Das sind Computerprogramme, mit denen der Entwickler den Schaltplan zeichnet und dann daraus das Lavout erstellt. Der Schaltplan enthält die eigentliche Entwicklungsarbeit und wird vom Schaltungsentwickler so erstellt, dass die Schaltung die Funktion des entsprechenden Blockes im Blockschaltbild des Gesamtgerätes erfüllt. Der Schaltplan kann mit Simulations-Tools auf seine Funktion überprüft werden. Dies setzt aber voraus, dass für die verwendeten Bauelemente Simulationsmodelle vorhanden sind (werden oft von den Bauelementherstellern zur Verfügung gestellt). Bevor der eigentliche Layoutprozess beginnt, muss sich der Entwickler für eine Platinengröße und für einen Lagenaufbau entscheiden. Dann muss er die Bauelemente und Bauteile auf der zur Verfügung stehenden Fläche verteilen (Plazierung). Danach werden die logischen Verbindungen des Schaltplanes in physikalische Leiterbahn-Verbindungen umgesetzt (Entflechten, Routen). Der wesentliche Punkt dabei ist, dass aus fertigungstechnischen Gründen ein Mindestabstand zwischen den einzelnen Leiterbahnen eingehalten werden muss und dass eine Kreuzung von Leiterbahnen nur auf verschiedenen Ebenen möglich ist. Der Entflechtungs- oder Routingvorgang kann automatisch mit einem sog. Autorouter oder von Hand erfolgen. Oft wird eine Kombination angewendet, bei der der Entwickler wichtigsten die Leitungen (z.B. die Stromversorgungsund Masseleitungen) verlegt und der Autorouter den Rest.

Da der Routing-Vorgang sehr zeitaufwendig ist, sind die Wahl der Platine (Größe und Aufbau) und die Plazierung kritisch und erfordern ein hohes Maß an Erfahrung: Bei zu kleiner Platine oder zu wenig Lagen kann die Entflechtung am Ende scheitern und muss mit einer größeren Platine bzw. mehr Lagen noch einmal durchgeführt werden. Umgekehrt führt eine zu große Platine mit zu vielen Lagen zu höheren Kosten in der Fertigung und schlagen sich damit direkt im Produktpreis nieder.

Aus dem Layout wird für jede Lage ein sog. Gerber-File erzeugt, mit dem dann ein sog. Photoplotter gesteuert wird. Der Photoplotter belichtet mit einer variablen Blende einen Film, der nach der Entwicklung als Maske für die Belichtung des Fotolackes dient.

Folgende Punkte müssen vor Beginn des Layouts mit dem Leiterplattenhersteller geklärt werden, da diese von der Ausrüstung des Leiterplattenherstellers abhängen (s. z.B. ilfa.de oder pcb-pool.de):

- Mindestbreite der Leiterbahnen
- Mindestabstand von Leiterbahnen, Bauelemente-Pads und Via-Pads
- Mindestdurchmesser der Bohrungen
- Mindestbreite des Kupferringes um eine Bohrung, wenn eine elektrische Verbindung mit der Bohrung hergestellt werden soll
- Mindestdurchmesser des Isolationsringes um eine Bohrung, wenn keine elektrische Verbindung mit der Bohrung vorhanden sein darf
- Maximale Anzahl und Mindestabstand der einzelnen Lagen

1.2.1 Spannungsversorgung

Digitale IC's werden mit immer höheren Taktfrequenzen betrieben. Die pulsförmige Stromaufnahme dieser IC's stellt enorme Anforderungen an die Spannungsversorgung auf dem PCB. Nichtbeachtung dieser Tatsache führt im besten Fall zu EMV-Problemen bei der Produktabnahme (CE-Kennzeichen) und im schlechtesten Fall zu nicht reproduzierbaren Fehlfunktionen der Schaltung.

Betrachten wir zunächst ein extrem vereinfachtes Modell eines digitalen IC's:

Digitalschaltungen werden heute in den weitaus meisten Fällen in CMOS-Technologie realisiert, deren Basisbestandteile der Inverter und das NAND-Gatter sind:

CMOS-Inverter

CMOS-NAND-Gatter

Die Betriebsspannung U_b liegt typisch zwischen 1.5V bei Hochleistungsprozessoren und 5V bei einfachen Mikrocontrollern.

Da digitale IC's in der Regel getaktet betrieben werden, kann man sehr vereinfacht annehmen, dass an der Taktflanke ca. die Hälfte aller Inverter und NAND-Gatter einen Übergang von H nach L bzw. von L nach H ausführen:

Hieraus kann nun ein sehr einfaches Modell eines digitalen IC's konstruiert werden:

Der Widerstand R_{on} simuliert beim Schließen des oberen Schalters den ON-Widerstand der parallel geschalteten PMOS-Transistoren und beim Schließen des unteren Schalters den ON-Widerstand der parallel geschalteten NMOS-Transistoren. Dabei wird davon ausgegangen, dass die Gateweite der PMOS-Transistoren wie üblich ca. 3mal größer dimensioniert ist um die geringere Beweglichkeit der Löcher auszugleichen und symmetrisches Schaltverhalten zu erreichen. Die Kapazität C_G simuliert die Gatekapazität der parallel geschalteten PMOS- und NMOS-Transistoren.

Die beiden Schalter werden abwechselnd mit der Taktfrequenz f_C geschlossen, so dass die Kapazität C_G über den Widerstand R_{on} periodisch auf die Betriebsspannung U_b aufgeladen und wieder entladen wird. Die Spannung U_G besitzt dabei den bekannten exponentiellen Zeitverlauf eines RC-Gliedes:

Anstiegs- und Abfallzeit:	$t_{\rm rf} \approx 2 \cdot R_{\rm on} \cdot C_{\rm G}$
Gemittelter Strom der Betriebsspannungsquelle:	$\mathbf{I}_{b} = \mathbf{C}_{G} \cdot \mathbf{U}_{b} \cdot \mathbf{f}_{C}$

Damit ist es möglich, die Modellparameter R_{on} und C_G aus den in den Datenblättern angegebenen bzw. abschätzbaren Größen I_b und t_{rf} zu bestimmen, wobei gegebenenfalls n gegeneinander verschobene Taktsignale zu berücksichtigen sind:

$$C_{G} = \frac{I_{b}}{U_{b} \cdot n \cdot f_{C}} \qquad \qquad R_{on} \approx \frac{t_{rf}}{2 \cdot C_{G}}$$

Der Strom für die Umladung der Kapazitäten wird pulsförmig aus der Betriebsspannungsquelle entnommen. Der Spitzenstrom beträgt in diesem Modell:

$$I_{max} = \frac{U_{b}}{R_{on}} = \frac{U_{b} \cdot C_{G}}{t_{rf}/2}$$

Beispiele:

	Ub	I _b	f _C	t _{rf}	n	C _G	R _{on}	I _{max}	L _{Amax}
C164	5V	32mA	8MHz	8ns	1	0.8nF	5Ω	1A	20nH
Pentium4	1.5V	80A	3GHz	80ps	8	2.2nF	$18 \text{m}\Omega$	83A	0.7pH
typ. IC	3V	ЗA	250MHz	1ns	4	1nF	0.5Ω	6A	250pH

Es ist instruktiv, R_{on} und C_G näherungsweise mit einem einfachen Transistor-Modell (s. 2.1.2) abzuschätzen:

$$\mathsf{R}_{\mathsf{on}} \approx \frac{\mathsf{L}}{\mathsf{N} \cdot \mu_{\mathsf{n}} \cdot \mathsf{C}'_{\mathsf{ox}} \cdot \mathsf{W}_{\mathsf{n}} \cdot (\mathsf{U}_{\mathsf{b}} - \mathsf{U}_{\mathsf{th}})} \qquad \mathsf{C}_{\mathsf{G}} \approx \mathsf{N} \cdot \mathsf{C}'_{\mathsf{ox}} \cdot (\mathsf{W}_{\mathsf{n}} + 3 \cdot \mathsf{W}_{\mathsf{n}}) \cdot \mathsf{L}$$

Hieraus ergibt sich näherungsweise die Anstiegs- und Abfallzeit der digitalen Signale:

$$t_{rf} \approx 2 \cdot R_{on} \cdot C_{G} \approx \frac{8 \cdot L^{2}}{\mu_{n} \cdot (U_{b} - U_{th})}$$

Die Anstiegs- und Abfallzeit digitaler Schaltungen wird also im wesentlichen durch die Gatelänge L bestimmt. Mit L=1µm, µ_n $\approx 0.05m^2/Vs$, U_b = 3V, U_{th} = 1V ergibt sich z.B. t_{rf} $\approx 80ps$

Die PSpice-Simulation Vergleich_MOSFET_Modell.sch zeigt, dass das vereinfachte Modell das prinzipielle Verhalten gut beschreibt.

Die bisherigen Überlegungen gehen von einer idealen Betriebsspannungsquelle aus. Auf einem PCB müssen jedoch zwischen Spannungsquelle und IC Zuleitungen verwendet werden. Selbst wenn die Spannungsquelle und die Zuleitungen ideal wären, würden die Strompulse in den Zuleitungen zu EMV-Problemen führen, die mit der Höhe der Pulse, der Länge der Zuleitungen und der Kürze der Pulse zunehmen (s. PSpice-Simulation Stromspektrum.sch). Da die Zuleitungen aber unvermeidlich einen Serienwiderstand und eine Induktivität besitzen, ist zusätzlich auch die Spannungversorgung des IC's nicht ideal, so dass die Funktionsfähigkeit des IC's beeinträchtigt werden kann. Der Serienwiderstand kann durch die Verwendung breiter Leiterbahnen klein genug gehalten werden und spielt für die Funktion des IC's keine Rolle, da er gegenüber R_{on} vernachlässigbar ist. Wichtig ist jedoch die Beachtung der maximalen Stromdichte in den Zuleitungen, damit keine unzulässige Erwärmung oder Elektromigration in den Zuleitungen auftritt.

Die Induktivität der Zuleitungen spielt dagegen für die Funktion des IC's eine kritische Rolle, da sie die Dauer von Strompulsen durch die Zuleitungen nach unten begrenzt.

Damit die Funktionsfähigkeit des IC's gewährleistet ist, darf die Zuleitungsinduktivität die Anstiegs- und Abfallzeit der digitalen Signale nicht wesentlich verlängern. Wir gehen also davon aus, dass die Anstiegs- und Abfallzeit trotz der Zuleitungsinduktivität ungefähr t_{rf} bleiben muss und leiten aus dieser Forderung eine Obergrenze für die Induktivität ab. Als Modell verwenden wir die folgende Schaltung:

Es gibt mehrere Wege mit unterschiedlicher Anschaulichkeit eine Obergrenze für L_A abzuschätzen:

Weg 1: Wenn man den Strompuls ohne Induktivität durch einen dreieckförmigen Puls mit Höhe I_{max} und Anstiegs- bzw. Abfallzeit t_{rf}/2 ersetzt, darf der Spannungsabfall an der Zuleitungsinduktivität während eines Pulses die Betriebsspannung nicht überschreiten, da mehr Spannung beim Einschalten nicht zur Verfügung steht:

$$L_{A} \cdot \frac{dI}{dt} \leq U_{b} \Rightarrow L_{A} \cdot \frac{I_{max}}{t_{rf}/2} \leq U_{b} \Rightarrow L_{A} \cdot \frac{C_{G} \cdot U_{b}}{\left(t_{rf}/2\right)^{2}} \leq U_{b} \Rightarrow L_{A} \leq \frac{t_{rf}^{2}}{4 \cdot C_{G}}$$

Weg 2: Das LC-Tiefpassfilter aus L_A und C_G darf höchstens die gleiche Anstiegszeit besitzen wie die durch das RC-Tiefpassfilter aus R_{on} und C_G festgelegte Anstiegszeit t_{rf} der Schaltung:

$$2 \cdot \sqrt{L_{A} \cdot C_{G}} \le t_{rf} \implies L_{A} \le \frac{t_{rf}^{2}}{4 \cdot C_{G}}$$

Weg 3: Ein Trapezpuls mit Anstiegszeit t_{rf} besitzt ein Spektrum, das etwa bis 1/(π ·t_{rf}) reicht (s. PSpice-Simulation Puls_spektrum.sch). Dieses Spektrum muss das LC-Filter aus L_A und C_G passieren können, wenn die Anstiegszeit nicht vergrößert werden soll:

$$\frac{1}{2 \cdot \pi \cdot \sqrt{L_{A} \cdot C_{G}}} \ge \frac{1}{\pi \cdot t_{rf}} \implies L_{A} \le \frac{t_{rf}^{-2}}{4 \cdot C_{G}}$$

Für unser Beispiel ($t_r = 1ns$, $C_G = 1nF$) ergibt sich: $L_A \le 250pH$. Die PSpice-Simulation Einfluss_von_LA.sch mit $L_A = 1pH$, 100pH, 250pH und 1nH bestätigt diese Abschätzung. Bei $L_A = 1pH$ ist kein Unterschied zur Simulation ohne Induktivität erkennbar, bei $L_A = 100pH$ ist die Anstiegszeit noch nahezu unverändert und bei $L_A = 1nH$ ist sie deutlich verlängert. Diese Überlegung bleibt auch korrekt, wenn man n phasenverschobene Taktsignale benutzt, so dass zum gleichen Zeitpunkt jeweils nur der n-te Teil der Gesamtkapazität über die Zuleitungsinduktivität L_A aufgeladen werden muss:

Näherungsweise kann dieses Modell durch folgendes Modell ersetzt werden:

Die PSpice-Simulation Einfluss_von_La_n_Taktsignale.sch bestätigt dieses Modell.

Wie kann eine solch niedrige Zuleitungsinduktivität erreicht werden? Betrachten wir dazu den Induktivitätsbelag verschiedener Zuleitungsgeometrien:

a) Doppel-Streifenleitung mit w=5mm Breite und s=10mm Abstand

$$\frac{L}{\ell} \approx \frac{\mu_0}{\pi} \cdot \ln\left(\frac{2 \cdot s}{w} + 1\right) \approx 600 \frac{pH}{mm}$$

b) Microstripleitung mit w=5mm Breite und h=0.5mm Abstand zur Massefläche

$$\frac{L}{\ell} \approx \mu_0 \cdot \frac{h}{w} \approx 120 \frac{pH}{mm}$$

c) Versorgungsfläche mit w=100mm Breite und h=0.5mm Abstand zur Massefläche

$$\frac{L}{\ell} \approx \mu_0 \cdot \frac{h}{w} \approx 6 \frac{pH}{mm}$$

Daraus folgt, dass die für digitale IC's in der Regel erforderliche Zuleitungsinduktivität wenn überhaupt, nur mit einer Versorgungsfläche erreicht werden kann. Aber selbst dann würde man sich durch die hohen Pulsströme in einer großflächigen Struktur massive EMV-Probleme einhandeln.

Die Lösung des Problems besteht in der Plazierung von Abblockkondensatoren mit Kapazität C_A in unmittelbarer Nähe des IC's, die sich über einen kurzen Zeitraum wie eine ideale Spannungsquelle mit einer Serieninduktivität L_A verhalten:

Die Induktivität L_A setzt sich aus mehreren Bestandteilen zusammen:

 Induktivität der Abblockkondensatoren selbst.
Diese kann aus der Resonanzfrequenz berechnet werden, die in den Datenblättern angegeben ist:

$$f_{r} = \frac{1}{2 \cdot \pi \cdot \sqrt{ESL \cdot C_{A}}} \Longrightarrow ESL \approx \frac{1}{4 \cdot \pi^{2} \cdot f_{r}^{2} \cdot C_{A}}$$

 \Rightarrow Keramikkondensatoren mit möglichst geringer Induktivität verwenden, d.h. C_A nur so groß wählen wie mit der kleinsten Induktivität vereinbar ist. Möglichst viele Abblockkondensatoren parallel schalten.

- Induktivität der Verbindungsleitungen zwischen Abblockkondensatoren und IC. Diese Induktivität nimmt proportional zur Schleifenfläche der Zuleitungen zu ⇒ Abblockkondensatoren möglichst dicht am IC plazieren, Abstand zwischen Hinund Rückleiter möglichst gering.
- Induktivität evtl. Via's Induktivität eines Via's mit Durchmesser d und Höhe h:

$$L \approx 200 \text{pH} \cdot \frac{\text{h}}{\text{mm}} \cdot \left[\ln \left(\frac{4\text{h}}{\text{d}} \right) + 1 \right]$$

 \Rightarrow Abblockkondensatoren möglichst ohne Via's anschließen

- Induktivität der IC-Powerpins Wire bond: 1-5nH Flip chip 100pH
 - ⇒ Bei Hochleistungs-IC's müssen die Abblockkondensatoren in das Chip-Package integriert werden. Evtl. muss zusätzlich genügend Abblockkapazität auf dem Chip integriert werden.

Natürlich kann sich die Abblockkapazität über einen längeren Zeitraum nicht wie eine ideale Spannungsquelle verhalten, da sie sich durch die dauernden Schaltvorgänge des IC's entlädt (s. PSpice-Simulation Entladung_von_Ca.sch). Diese Entladung muss durch die Zuleitungen zu den Abblockkondensatoren verhindert werden, die allerdings auch wieder eine Induktivität L_{S1} besitzen:

Unter der Voraussetzung $C_A >> n \cdot C_G$ kann aus dem mittleren Betriebsstrom die Zeit berechnet werden, innerhalb der die Spannung U_A an der Abblockkapazität um ΔV absinkt:

$$\mathsf{T}_{\mathsf{Entladung}} = \frac{\Delta \mathsf{V} \cdot \mathsf{C}_{\mathsf{A}}}{\mathsf{I}_{\mathsf{b}}}$$

In der Praxis darf ΔV einen bestimmten Wert nicht überschreiten, wenn die Funktionsfähigkeit des IC's nicht beeinträchtigt werden soll. Da die Abblockkapazität über die Zuleitungsinduktivität L_{S1} aufgeladen werden muss, muss die Zeitkonstante des LC-Filters aus L_{S1} und C_A kürzer als die zulässige Entladungszeit sein:

$$\sqrt{L_{S1} \cdot C_{A}} \leq \frac{\Delta V \cdot C_{A}}{I_{b}} \Rightarrow \sqrt{\frac{L_{S1}}{C_{A}}} \leq \frac{\Delta V}{I_{b}} \Rightarrow L_{S1} \leq \left(\frac{\Delta V}{I_{b}}\right)^{2} \cdot C_{A}$$

Für unser Beispiel (I_b=3A) ergibt sich mit ΔV =0.3V und C_A=100nF: L_{S1} \leq 1nH

s. PSpice-Simulation Aufladung_von_Ca.sch

Dieses Ergebnis kann auch sehr anschaulich im Frequenzbereich interpretiert werden.

Die Impedanz des Versorgungssystems aus L_{S1} und C_A kann in unserem Modell analytisch berechnet werden, wobei wegen der auftretenden Resonanzen auch die Serienwiderstände berücksichtigt werden sollen:

wobei
$$\omega_{\text{RL1}} = \frac{R_{\text{S1}}}{L_{\text{S1}}} \quad \omega_{\text{L1CA}} = \frac{1}{\sqrt{L_{\text{S1}} \cdot C_{\text{A}}}} \quad \omega_{\text{RCA}} = \frac{1}{R_{\text{A}}C_{\text{A}}}$$

Asymptotisches Bode-Diagramm des Impedanzverlaufes:

Da die Impedanz im asymptotischen Bode-Diagramm bei der Resonanzfrequenz ω_{L1CA} ihren maximalen Wert $\sqrt{\frac{L_{S1}}{C_A}}$ annimmt, folgt aus der im Zeitbereich abgeleiteten Bedingung $\sqrt{\frac{L_{S1}}{C_A}} \leq \frac{\Delta V}{I_b}$ für die Zuleitungsinduktivität, dass die Impedanz im asymptotischen Diagramm einen Maximalwert $\Delta V/I_b$ nicht überschreiten darf. Dieser beträgt in unserem Beispiel 0.1 Ω

Im realen Verlauf tritt bei der Resonanzfrequenz eine Resonanzüberhöhung um den Gütefaktor $q = \frac{1}{R_{s1} + R_A} \sqrt{\frac{L_{s1}}{C_A}}$ auf.

Mit $R_{S1} = 20m\Omega$ und $R_A = 10m\Omega$ ergibt sich in unserem Beispiel:

 $f_{RL1} = 3.2MHz$, $f_{L1CA} = 15.9MHz$, $f_{RCA} = 159MHz$, q=3.3 (s. PSpice-Simulation Aufladung_von_Ca_Impedanz.sch (Display Impedanz_ohne_LA).

Aus dem Impedanzverlauf folgt, dass bei Frequenzen oberhalb der Stromversorgung der Abblockkapazität Resonanzfrequenz f_{L1CA} die von unterhalb Zuleitungsinduktivität. übernommen wird und von der Die Resonanzüberhöhung der Impedanz bei der Resonanzfrequenz führt zu einem Kreisstrom zwischen L_{S1} und C_A, der um einen Faktor g höher ist als der vom IC benötigte Strom (s. PSpice-Simulation Aufladung von Ca Impedanz.sch (Displav Strom)).

Man erkennt, dass es umso leichter ist, die Anforderung an die Zuleitungsinduktivität L_{S1} zu erfüllen, je größer die Abblockkapazität ist. Einer beliebigen Vergrößerung der Abblockkapazität steht in der Praxis die Obergrenze für LA im Wege. Diese Obergrenze erzwingt bei Hochleistungs-IC's die Integration der Abblockkapazität in den IC oder in das IC-Gehäuse. Dies wiederum begrenzt die Größe der Abblockkapazität technologisch und ökonomisch. Aber auch wenn die Abblockkapazität außerhalb des IC's realisiert werden kann. existieren technologische und ökonomische Grenzen, da eine große Abblockkapazität bei gleichzeitig niedriger Anschlussinduktivität oft nur durch Parallelschaltung vieler kleiner Kapazitäten realisiert werden kann.

Maßnahmen zur Verringerung von L_S:

- Enger Abstand zwischen Hin- und Rückleiter; am besten mit Leiterbahnen über Massefläche oder, wenn aus Kostengründen keine Massefläche möglich ist, mit Doppel-Leiterbahn (sog. Koplanarleiter).
- Breite Leiterbahnen (hilft wegen der logarithmischen Abhängigkeit der Induktivität von der Breite aber nur begrenzt)
- VDD-GND-Flächen-Sandwich (Für die Spannungsversorgung der IC's die beste Lösung, allerdings nicht unproblematisch bezüglich EMV wegen der Resonanzen des VDD-GND-Wellenleiters (LC-Schwingkreis))

Wenn trotzdem die Anforderung an die Zuleitungsinduktivität L_{S1} nicht mit einer direkten Verbindung zum Power-Supply erfüllt werden kann, kann eine zusätzliche Stützkapazität C_{S1} verwendet werden, die nur soweit entfernt plaziert wird, dass die Anforderung an L_{S1} erfüllt werden kann:

Die Anstiegszeit des LC-Filters aus L_{S2} und C_{S1} muss kürzer sein als die Zeit, in der sich die Stützkapazität C_{S1} um ΔV entlädt:

$$\sqrt{\mathsf{L}_{\mathtt{S2}} \cdot \mathsf{C}_{\mathtt{S1}}} \leq \frac{\Delta \mathsf{V} \cdot \mathsf{C}_{\mathtt{S1}}}{\mathsf{I}_{\mathtt{b}}} \Rightarrow \sqrt{\frac{\mathsf{L}_{\mathtt{S2}}}{\mathsf{C}_{\mathtt{S1}}}} \leq \frac{\Delta \mathsf{V}}{\mathsf{I}_{\mathtt{b}}} \Rightarrow \mathsf{L}_{\mathtt{S2}} \leq \left(\frac{\Delta \mathsf{V}}{\mathsf{I}_{\mathtt{b}}}\right)^2 \cdot \mathsf{C}_{\mathtt{S1}}$$

Mit diesem Prinzip kann eine Hierarchie von Stützkapazitäten aufgebaut werden, die mit zunehmender Entfernung vom IC immer größer werden.

In jeder Stufe muss dabei die Bedingung erfüllt sein: $\sqrt{\frac{L_{S(k+1)}}{C_{Sk}}} \le \frac{\Delta V}{I_b}$

Auch dieses Ergebnis kann wieder in einem asymptotischen Bode-Diagramm des Impedanzverlaufes dargestellt werden:

Aus dem Impedanzverlauf folgt, dass bei Frequenzen oberhalb von f_{L1CA} die Stromversorgung von der Abblockkapazität übernommen wird. Zwischen f_{L2C1} und f_{L1CA} wird die Stromversorgung von der Stützkapazität C_{S1} und unterhalb von f_{L2C1} von der Zuleitungsinduktivität L_{S2} übernommen. Auch hier führen Resonanzüberhöhungen der Impedanz bei den Frequenz f_{L1CA} und f_{L2C1} zu Kreisströmen zwischen L_{S1} und C_A sowie zwischen L_{S2} und C_{S1} , die höher sind als der vom IC benötigte Strom s. PSpice-Simulationen Aufladung_von_Cs_Impedanz.sch (Displays Impedanz_ohne_LA und Strom).

Das letzte Glied in der Kette ist der Spannungsregler, der eine sehr niedrige Impedanz bei DC besitzt und eine näherungsweise proportional zur Frequenz ansteigende Impedanz aufgrund seiner endlichen Transitfrequenz:

$$\underline{Z}_{\text{reg}} \approx \frac{r_{\text{O}}}{A(0)} + j\omega \cdot \frac{r_{\text{O}}}{\omega_{\text{T}}}$$

Mit typ. Werten ($r_0 \approx 1\Omega$, $A(0) \approx 10^4$, $f_T \approx 1$ MHz) ergibt sich: $\underline{Z}_R \approx 0.1 m\Omega + j\omega \cdot 160$ nH (s. Simulation Spannungsregler_MOSFET.sch)

Wenn ein solcher Regler in unserem Beispiel verwendet würde, wäre $L_{S2} = 160$ nH. Aus der Bedingung $\sqrt{\frac{L_{S2}}{C_{S1}}} \le \frac{\Delta V}{I_b}$ folgt, dass die Stützkapazität C_{S1} in diesem Fall

mindestens 16µF betragen muss.

Mit $R_{S2} = 0.1m\Omega$, $L_{S2} = 160nH$, $C_{S1} = 16\mu F$, $R_{C1} = 20m\Omega$, $L_{S1} = 1nH$, $R_{S1} = 1m\Omega$ ergeben sich folgende Frequenzen und Gütefaktoren:

 $f_{LR2} = 1kHz$, $f_{L2C1} = 100kHz$, q = 5, $f_{L1CA} = 15.9MHz$, $f_{RCA} = 159MHz$, q=3.3

s. Simulationen Aufladung_von_Cs_fast.sch und Aufladung_von_Cs_slow.sch

Ein hierarchischer Aufbau des Spannungsversorgungssystems ist auch unter EMV-Gesichtspunkten sinnvoll, da hierdurch die hochfrequenten Ströme auf einen geometrisch kleinen Bereich eingeschränkt werden können.

In den Simulationen Pentium4_Impedanz.sch, Pentium4_Transient_fast.sch, Pentium4_Transient_middle.sch und Pentium4_Transient_slow.sch ist die Spannungsversorgung eines Pentium4-Prozessors entsprechend den Application Notes von Intel ausgelegt. Auswirkungen der Spannungsversorgung auf die EMV

 Galvanische Kopplung (Gemeinsame Impedanzen in zwei Stromkreisen)
Die hochfrequenten Anteile des Versorgungsstromes in den Masseflächen und Masseleitungen führen zu induktiven Spannungsabfällen, die sich in Signalstromkreisen wiederfinden, wenn diese den gleichen Massepfad benutzen

Abhilfe: Eigene Massepfade für Signale

• Kapazitive Kopplung (Kapazitiver Strom zwischen benachbarten Stromkreisen)

Wegen der niedrigen Spannung spielt dieser Effekt auf Platinen nur eine geringe Rolle • Induktive Kopplung (Induzierte Spannung in induktiv gekoppelten Stromkreisen)

Abhilfe: Gemeinsame Schleifenflächen durch Layout minimieren

• Abstrahlung

Abhilfe: Begrenzung der hochfrequenten Stromanteile durch hierarchisches Abblockkonzept auf einen möglichst kleinen Raum

1.2.2 Signalintegrität

Da sich analoge Signale und digitale Spannungspegel meistens auf Masse beziehen, ist eine gute Masseverbindung zwischen IC's sehr wichtig. Sie wird am besten erreicht, wenn man mehrlagige Leiterplatten verwendet und mindestens eine Ebene als durchgängige Massefläche (mit Aussparungen bei Durchkontaktierungen) vorsieht. Die Massepins der integrierten Schaltungen sollten so dicht wie möglich am IC an die Masseebene angeschlossen werden.

Wenn analoge und digitale Signale über Leitungen geführt werden, muss die Masseleitung möglichst dicht an den Signalleitungen verlaufen, damit die Induktivität genügend klein bleibt. Ideal sind Microstrip-Leitungen auf der Platine und Koaxialkabel bzw. verdrillte Zweidrahtleitungen bei Verbindungen zwischen Geräten. Bei Buskabeln verlaufen idealerweise jeweils abwechselnd Masseleitungen zwischen den Signalleitungen, oft ist aus Kostengründen die Zahl der Masseleitungen aber auch geringer (z.B. nur 2 Masseleitungen als äußerste Leitungen).

Wenn die doppelte Laufzeit einer Leitung größer wird als die Anstiegszeit der Signale, treten Leitungsreflexionen auf, die zur Verfälschung der logischen Pegel führen können. In diesem Fall muss man die Leitung mit einem Widerstand abschließen, der dem Wellenwiderstand der Leitung entspricht (typ. zwischen 50 Ω und 100 Ω).

Da die typ. Laufzeit 5ns/m beträgt, müssen Leitungsreflexionen beachtet werden, wenn die Leitung länger ist als 10cm×Anstiegszeit in ns.

Übertragung eines Digitalsignals mit einer Anstiegs- und Abfallzeit von 5ns über eine Leitung mit Wellenwiderstand 50Ω :

Verzögerungszeit der Leitung 1ns (entspricht ca. 20cm Länge):

Verzögerungszeit der Leitung 5ns (entspricht ca. 1m Länge):

Verzögerungszeit der Leitung 5ns, Widerstand $RL = 50\Omega$ parallel zu CL:

Bei analogen Signalen verwendet man ein äquivalentes Kriterium für sinusförmige Signale:

Leitungsreflexionen müssen beachtet werden, wenn die Frequenz höher ist als der Kehrwert der vierfachen Laufzeit. Dies entspricht der Forderung, dass die Leitung kürzer sein muss als ein Viertel der Wellenlänge.

Auch hier verhindert ein Leitungsabschluss mit dem Wellenwiderstand von 50Ω die Reflexionen:

Die verbleibenden Resonanzen werden durch die kapazitive Last verursacht.

1.3 Zuverlässigkeit

Die Zuverlässigkeit elektronischer Bauelemente wird zum einen durch den Aufwand beim Bauelementehersteller bestimmt:

- Entwicklungsreife
- verwendete Materialien
- Kontrolle des Herstellungsprozesses
- Lagerung
- Verpackung und Transport

Zum anderen ist aber auch der Gerätehersteller für die Zuverlässigkeit verantwortlich durch:

- Vermeidung maximaler Grenzwerte (Überdimensionierung)
- Schutz vor Umwelteinflüssen
- Überlastungsschutz

Da alle diese Maßnahmen Kosten verursachen, steigen die Bauelementekosten bei höheren Ansprüchen an die Zuverlässigkeit. Andererseits steigen die Betriebskosten der Schaltung bei einem vorzeitigen Ausfall des Bauelementes. Insgesamt ergibt sich ein Kostenminimum für die Schaltung bei einer bestimmten Zuverlässigkeit (quantifiziert durch eine Fehler- oder Ausfallwahrscheinlichkeit):

1.3.1 Fehlerwahrscheinlichkeit

Wenn ein Gerätehersteller eine große Anzahl von Bauelementen erwirbt, muss er mit dem Bauelementelieferanten eine bestimmte maximale Fehlerwahrscheinlichkeit (Qualität) vereinbaren. Natürlich kann er vom Lieferanten verlangen, dass dieser alle Bauelemente testet und auf ihre Übereinstimmung mit den Spezifikationen überprüft. Vor allem bei passiven Bauelementen würde dies aber zu unnötig hohen Kosten führen. Deshalb wird eine bestimmte Fehlerwahrscheinlichkeit und ein Abnahmemodus vereinbart, bei dem aufgrund von Stichproben die tatsächliche Fehlerrate überprüft wird. Je nach Ergebnis wird die Lieferung akzeptiert oder zurückgewiesen.

Die Fehlerwahrscheinlichkeit f_{BE} der Bauelemente bestimmt zusammen mit der Fehlerwahrscheinlichkeit f_{BS} der Bestückung und mit der Fehlerwahrscheinlichkeit f_L der Lötung die Fehlerwahrscheinlichkeit F_{BG} der Baugruppe:

Da die Wahrscheinlichkeit für ein korrektes Bauelement $w_{BE} = 1 - f_{BE}$, für eine korrekte Bestückung $w_{BS} = 1 - f_{BS}$, für eine korrekte Lötung $w_L = 1 - f_L$ und für eine korrekte Baugruppe $W_{BG} = 1 - F_{BG}$ ist, gilt nach den Gesetzen der Wahrscheinlichkeitsrechnung:

 $W_{BG} = w_{BE}^{N_{BE}} \cdot w_{BS}^{N_{BE}} \cdot w_{L}^{N_{L}}$ N_{BE}: Anzahl der in der Baugruppe enthaltenen Bauel. N_L: Anzahl der in der Baugruppe enthaltenen Lötungen

Da die Fehlerwahrscheinlichkeiten in der Praxis sehr klein sind, können folgende Näherungen verwendet werden:

$$\begin{split} \boldsymbol{w}_{BE}^{N_{BE}} &= \left(1 - f_{BE}\right)^{N_{BE}} \approx 1 - N_{BE} \cdot f_{BE} \\ \boldsymbol{w}_{BS}^{N_{BE}} &= \left(1 - f_{BS}\right)^{N_{BE}} \approx 1 - N_{BE} \cdot f_{BS} \\ \boldsymbol{w}_{L}^{N_{L}} &= \left(1 - f_{L}\right)^{N_{L}} \approx 1 - N_{L} \cdot f_{L} \end{split}$$

Da in der Praxis auch die Terme $N \cdot f$ wesentlich kleiner als 1 sind, kann man eine weitere Näherung benutzen:

$$W_{BG} \approx \left(1 - N_{BE} \cdot f_{BE}\right) \cdot \left(1 - N_{BE} \cdot f_{BS}\right) \cdot \left(1 - N_{L} \cdot f_{L}\right) \approx 1 - N_{BE} \cdot f_{BE} - N_{BE} \cdot f_{BS} - N_{L} \cdot f_{L}$$

Damit kommt man insgesamt zu einer einfachen Formel für die Fehlerwahrscheinlichkeit F_{BG} einer Baugruppe:

 $F_{BG} \approx N_{BE} \cdot f_{BE} + N_{BE} \cdot f_{BS} + N_{L} \cdot f_{L}$

Da die Kosten beim Einbau einer defekten Baugruppe in ein Gerät relativ hoch sind, wird man in der Regel die Baugruppen vor dem Einbau testen. Wenn die Fehlerwahrscheinlichkeit der Baugruppe allerdings niedrig genug ist, kann man auch hier mit statistischen Methoden arbeiten.

Das Ziel ist immer die Minimierung der Gesamtkosten

1.3.2 Ausfallwahrscheinlichkeit

Auch elektronische Bauelemente unterliegen einem Verschleiss, der zu einem Ausfall des Bauelementes führen kann. Die sogenannte Ausfallrate λ gibt an, welcher Bruchteil Δ N von N Bauelementen im Mittel während eines Zeitintervalls Δ t ausfällt:

$$\lambda = \frac{\left|\Delta N/N\right|}{\Delta t}$$

Die Ausfallrate hat die Benennung pro Zeiteinheit und wird in Datenblättern häufig in *fit* (failure in time) angegeben (1fit = $10^{-9}/h$).

Der Kehrwert der Ausfallrate wird als MTBF (mean time between failure) bezeichnet:

$$MTBF = 1/\lambda$$

Wenn man die Ausfallrate über der Betriebszeit aufträgt ergibt sich die sog. Badewannenkurve:

Am Beginn der Betriebszeit ist die Ausfallrate durch Frühausfälle erhöht. Ursachen können sein:

- Herstellungsfehler
- Schädigung beim Einbau (thermisch, mechanisch, Electrostatic Discharge (ESD) Frühausfälle können durch einen burn-in ausgesondert werden.

Danach sinkt die Ausfallrate auf einen konstanten Wert. Diese Ausfälle sind zufällig und meist durch Materialveränderung (Diffusion, Migration, Grenzschichtveränderung) bedingt. Da diese Prozesse thermisch aktiviert werden, hängt die Ausfallrate in diesem Bereich stark von der Temperatur ab.

Irgendwann steigt die Ausfallrate wieder an. Diese sog. Verschleissausfälle werden z.B. durch Materialermüdung und Korrosion verursacht.

Aus der Definition der Ausfallrate kann man durch Lösen einer Differentialgleichung die Wahrscheinlichkeit berechnen, mit der ein Bauelement ausfällt:

$$\frac{\Delta N}{\Delta t} = -\lambda \cdot N \qquad \Rightarrow \qquad \frac{dN}{dt} = -\lambda \cdot N \qquad \Rightarrow \qquad \boxed{N(t) = N(0) \cdot e^{-\lambda \cdot t}}$$

N(t) gibt die Anzahl von Bauelementen an, die von insgesamt N(0) Bauelementen nach einer Zeit t noch intakt sind.

Wahrscheinlichkeit, dass ein Element in der Zeit t intakt bleibt: $w = \frac{N(t)}{N(0)} = e^{-\lambda \cdot t}$

Daraus ergibt sich die exakte Formel für die Ausfallwahrscheinlichkeit f: $f = 1 - e^{-\lambda t}$

Wenn das Produkt $\lambda \cdot t \ll 1$ ist, kann man die e-Funktion nähern: $e^{-\lambda \cdot t} \approx 1 - \lambda \cdot t$

Damit erhält man eine Näherungsformel für die Ausfallwahrscheinlichkeit f: $f \approx \lambda \cdot t$

Mit der Ausfallwahrscheinlichkeit kann man genauso rechnen wie mit der Fehlerwahrscheinlichkeit im letzten Abschnitt. Die Ausfallwahrscheinlichkeit F einer Baugruppe bestehend aus N₁ Bauelementen mit Ausfallrate λ_1 und N₂ Bauelementen mit Ausfallrate λ_2 ergibt sich demnach zu:

$$F \approx N_1 \cdot f_1 + N_2 \cdot f_2 \approx N_1 \cdot \lambda_1 \cdot t + N_2 \cdot \lambda_2 \cdot t$$

Analog zur Ausfallrate eines Bauelementes kann man eine effektive Ausfallrate λ_{eff} für die Baugruppe so definieren, dass $F \approx \lambda_{eff} \cdot t$ gilt. Wenn man dies mit dem vorhergehenden Ergebnis vergleicht, erhält man für λ_{eff} :

$$\lambda_{eff} = N_1 \cdot \lambda_1 + N_2 \cdot \lambda_2$$

1.4 Derating

1.4.1 Safe Operating Area

Beim Betrieb elektronischer Bauelemente dürfen bestimmte Grenzwerte nicht überschritten werden.

Von den drei Grenzwerten U_{max}, I_{max} und P_{max} wird im I-U-Diagramm eine Fläche definiert, die beim Betrieb nicht oder allenfalls nur sehr kurzzeitig verlassen werden darf. Diese Fläche heisst Safe-Operating-Area (SOA):

Linearer Maßstab

Doppelt-Logarithmischer Maßstab

Während die beiden Grenzen U_{max} und I_{max} direkt im Datenblatt angegeben sind, muss P_{max} aus den Datenblattangaben und Betriebsbedingungen errechnet werden.

1.4.2 Maximale Verlustleistung beim Betrieb ohne Kühlkörper

Wenn das Bauelement für einen Betrieb ohne Kühlkörper vorgesehen ist, ist im Datenblatt neben der Maximaltemperatur (meist als T_{Jmax} bezeichnet) eine Leistung $P_{DB}^{\ U}$ bei einer Umgebungstemperatur $T_{U}^{\ DB}$ angegeben. Diese Leistung ist für Umgebungstemperaturen unterhalb von $T_{U}^{\ DB}$ die maximale Verlustleistung:

 $P_{max} = P_{DB}^{U}$, wenn $T_U \le T_U^{DB}$

Bei höheren Umgebungstemperaturen ist P_{max} kleiner als dieser Wert (Derating).

Die Umgebungstemperatur ist in der Praxis nicht einfach Raumtemperatur, sondern die Temperatur, die sich nach genügend langer Zeit in der Umgebung des Bauelementes einstellt. Da die Bauelemente oft aus zwingenden oder ästhetischen Gründen (Design) an ungünstigen Orten eingebaut werden (z.B. die Fensterhebersteuerung in der Tür eines Kfz, die Scheinwerferverstellung im Scheinwerfergehäuse usw.) kann die Umgebungstemperatur erheblich höher als Raumtemperatur sein. Die Umgebungstemperatur kann durch größere Hohlräume mit entsprechend größeren Oberflächen, durch Kühlschlitze, Lüfter usw. abgesenkt werden. In jedem Fall muss jedoch für T_{U} der worst-case angenommen werden, d.h. zum Beispiel direkte Sonnenbestrahlung einer Autotür ($T_U = 90 \,$ °C).

Wie bereits ausgeführt, ist die Temperaturerhöhung im Bauelement das eigentlich kritische an der Verlustleistung. Die Temperaturerhöhung ΔT des Bauelementes gegenüber der Umgebung durch eine Wärmeleistung P_{th} kann aus der Wärmeleitungsgleichung ermittelt werden:

$$\Delta \mathsf{T} = \mathsf{R}_{\mathsf{thJU}} \cdot \mathsf{P}_{\mathsf{th}}$$

Dabei ist R_{thJU} der Wärmewiderstand zwischen dem aktiven Bereich des Bauelementes (Junction) und der Umgebung (typ. 100K/W). Diese Gleichung ist analog zum ohmschen Gesetz in der Elektrizitätslehre:

 $\Delta T = T_J - T_U$: Temperaturerhöhung P_{th} : Wärmeleistung = Verlustleistung R_{thJU} : Therm. Widerstand Bauel. \leftrightarrow Umgebung J: Junction, Sperrschicht, aktiver Bereich U: Umgebung, A: Ambient

Mit Hilfe dieser Gleichung kann man die maximale Verlustleistung berechnen, indem man die maximal zulässige Temperaturdifferenz $\Delta T = T_{Jmax} - T_U$ einsetzt:

$$P_{max} = \frac{T_{Jmax} - T_{U}}{R_{thJU}}, \text{ wenn } T_{U} > T_{U}^{DB}$$

Wenn man die maximale Verlustleistung über der Umgebungstemperatur aufträgt, erhält man unterhalb von T_U^{DB} eine waagrechte Gerade mit $P_{max} = P_{DB}^{U}$. Oberhalb von T_U^{DB} nimmt die maximale Verlustleistung nach dieser Formel mit der Steigung -1/R_{thJU} ab und schneidet die Temperaturachse bei T_{Jmax} (Deratingkurve):

Man kann entweder die maximale Verlustleistung aus dieser Deratingkurve entnehmen oder man benutzt die Formel. Wenn der dazu benötigte thermische Widerstand R_{thJU} nicht im Datenblatt angegeben ist, kann er aus der Steigung der Deratingkurve berechnet werden (T_{Jmax} , T_U^{DB} und P_{DB}^{U} sind immer angegeben):

$$R_{thJU} = \frac{T_{Jmax} - T_{U}^{DB}}{P_{DB}^{U}}$$

1.4.3 Maximale Verlustleistung beim Betrieb mit Kühlkörper

In diesem Fall ist der thermische Widerstand zwischen dem aktiven Bereich des Bauelementes und der Umgebung eine Reihenschaltung aus dem thermischen Widerstand R_{thJG} zwischen dem aktiven Bereich des Bauelementes und dem Gehäuse und aus dem thermischen Widerstand R_{thGU} zwischen Gehäuse und Umgebung (= thermischer Widerstand des Kühlkörpers):

Da nur der thermische Widerstand R_{thJG} zwischen aktivem Bereich und Gehäuse unabhängig vom Anwender ist, werden bei Bauelementen, die für einen Betrieb mit Kühlkörper vorgesehen sind, alle Angaben im Datenblatt auf die Gehäusetemperatur T_G bezogen. Neben der Maximaltemperatur T_{Jmax} ist im Datenblatt eine Leistung P_{DB}^G bei einer Gehäusetemperatur T_G^{DB} angegeben. Diese Leistung ist für Gehäusetemperaturen unterhalb von T_G^{DB} die maximale Verlustleistung:

$$\boxed{P_{max} = P_{DB}^{\ G}}, \ wenn \ T_G \leq T_G^{\ DB}$$

Bei höheren Gehäusetemperaturen muss P_{max} reduziert werden (Derating). Da die Gehäusetemperatur immer höher als die Umgebungstemperatur ist, ist dies praktisch immer der Fall.

Genau wie beim Betrieb ohne Kühlkörper erhält man die maximale Verlustleistung, indem man die maximal zulässige Temperaturdifferenz $\Delta T = T_{Jmax} - T_{G}$ in die Wärmeleitungsgleichung einsetzt:

$$P_{max} = \frac{T_{Jmax} - T_{G}}{R_{thJG}}, \text{ wenn } T_{G} > T_{G}^{DB}$$

Wenn man die maximale Verlustleistung über der Gehäusetemperatur aufträgt, erhält man unterhalb von T_G^{DB} eine waagrechte Gerade mit $P_{max} = P_{DB}^{G}$. Oberhalb von T_G^{DB} nimmt die maximale Verlustleistung nach dieser Formel mit der Steigung -1/R_{thJG} ab und schneidet die Temperaturachse bei T_{Jmax} (Deratingkurve):

Im Gegensatz zum Betrieb ohne Kühlkörper kann man aus der Formel und aus dieser Kurve die maximale Verlustleistung nicht direkt entnehmen, da die Gehäusetemperatur in der Praxis nicht bekannt ist. Man benutzt diese Kurve, um aus der Steigung den thermischen Widerstand R_{thJG} zwischen aktivem Bereich und Gehäuse zu berechnen (T_{Jmax}, T_G^{DB} und P_{DB}^G sind immer angegeben):

R –	$T_{Jmax} - T_{G}^{DB}$
thJG —	P _{DB} ^G

Typ. Werte für R_{thJG} liegen zwischen 100K/W für niedrige Leistungen bis 0.05K/W für Leistungsbauelemente.

In Reihe zum thermischen Widerstand R_{thJG} liegt der thermische Widerstand R_{thGU} des Kühlkörpers. Dieser Widerstand kann vom Anwender beeinflusst werden und hängt vom Material, vom Querschnittsprofil, von der Länge der Kühlrippen und von der Montage (Wärmeleitpaste, Glimmerplättchen) ab. Werte für R_{thGU} können aus Tabellen entnommen werden. Die maximale Verlustleistung bei Verwendung eines bestimmten Kühlkörpers kann berechnet werden, indem man für die Reihenschaltung die Summe aus R_{thJG} und R_{thGU} in die Wärmeleitungsgleichung einsetzt:

$$P_{max} = \frac{T_{Jmax} - T_{U}}{R_{thJG} + R_{thGU}}$$

In keinem Fall darf P_{max} jedoch den Wert P_{DB}^{G} überschreiten (kann rechnerisch passieren, wenn eine sehr niedrige Umgebungstemperatur T_U eingesetzt wird).

Umgekehrt kann mit dieser Formel der Maximalwert von R_{thGU} berechnet werden, der bei einer bestimmten maximalen Verlustleistung nicht überschritten werden darf. Damit kann dann ein geeigneter Kühlkörper ausgewählt oder dimensioniert werden.
1.4.4 Maximale Verlustleistung bei Impulsbelastung

Häufig tritt der Fall auf, dass die Verlustleistung P_{max} nur periodisch während einer kurzen Zeit t_p auftritt, die wesentlich kürzer als die Periodendauer T ist. Da alle an der Wärmeleitung beteiligten Materialien auch eine Wärmekapazität besitzen, ist die Temperaturerhöhung während der Zeit t_p kleiner als wenn die Verlustleistung dauernd anfällt. Dadurch wird der thermische Widerstand scheinbar kleiner. Dieser scheinbare thermische Widerstand Z_{thJU} bzw. Z_{thJG} (sog. thermische Impedanz) bei Impulsbelastung wird in den Datenblättern in Kurvenform als Funktion von t_p und vom Tastverhältnis t_p/T angegeben.

Bei Verwendung eines Kühlkörpers verkleinert sich der thermische Widerstand des Kühlkörpers scheinbar auf den Wert $R_{thGU} \cdot t_p/T$, da wegen der großen thermischen Trägheit des Kühlkörpers nur die mittlere Leistung zu einem Temperaturanstieg führt.

Die entsprechenden Formeln für die Berechnung der maximalen Leistung im Impulsbetrieb lauten damit:

ohne Kühlkörper:

$$P_{max} = \frac{T_{Jmax} - T_{U}}{Z_{thJU}}$$
mit Kühlkörper:

$$P_{max} = \frac{T_{Jmax} - T_{U}}{Z_{thJG} + R_{thGU} \cdot t_{p}/T}$$

Daraus ergibt sich bei kurzen Pulsen eine wesentlich höhere Maximalleistung. Diese kann auch höher als P_{DB} sein.

Im I-U-Diagramm bedeutet dies, dass die statische P_{max}-Kurve kurzzeitig bis zur entsprechenden Puls-Kurve überschritten werden darf.

Auch die Grenzwerte I_{max} und U_{max} können bei Pulsbelastung höher liegen, wenn dies im Datenblatt angegeben ist.

2 Leistungs-Schaltungen

2.1 Transistorkenngrößen

2.1.1 Bipolar-Leistungstransistor

Großsignalkenngrößen bei niedrigen Frequenzen

Vierpolgleichungen in Emitterschaltung für npn-Transistoren (bei pnp-Transistoren kehren sich die Vorzeichen aller Spannungen und Ströme um):

Leitwertform:

Hybridform

$$\begin{split} I_B &= f_L \big(U_{BE}, U_{CE} \big) & U_{BE} &= f_H \big(I_B, U_{CE} \big) \\ I_C &= g_L \big(U_{BE}, U_{CE} \big) & I_C &= g_H \big(I_B, U_{CE} \big) \end{split}$$

Diese nichtlinearen Gleichungen werden i. a. als Kennlinienfelder in den Datenblättern angegeben (s. nächste Seite)

Näherungsweise analytische Beschreibung:

Leitwertform:

Hybridform:

$$\begin{split} I_B &\approx I_{BS} \cdot \left(e^{U_{BE}/U_T} - 1 \right) & U_{BE} &\approx 0.6...0.8V \\ I_C &\approx I_{CS} \cdot e^{U_{BE}/U_T} & I_C &\approx B \cdot I_B & \text{ im aktiven Bereich } (U_{CE} \geq U_{BE}) \\ U_{CE} &\approx U_{CEsat} & U_{CEsat} & \text{ im Sättigungsbereich } (U_{CE} < U_{BE}) \end{split}$$

Übertragungskennlinien des npn-Transistors BD139 (Leitwertform):

Ausgangskennlinien des npn-Transistors BD139 (Hybridform):

Kleinsignal-Ersatzschaltbild des Bipolartransistors

Größe	Bedeutung	typ. Wert
UT	Temperaturspannung	$U_T = k_B T/e \approx 25 mV$ bei T = 300K
В	Stromverstärkung	20200
U _{CEsat}	Sättigungsspannung	0.3V0.6V
UY	Early-Spannung	100V
f _T	Transitfrequenz	1100MHz
C _{BC}	Basis-Collector-Kapazität	10100pF

Vorteile:

Nachteile:

niedrige Steuerspannung	rel. großer Steuerstrom
hohe Steilheit	rel. große Ausschaltzeit
hohe Durchbruchspannung möglich	Gefahr der thermischen Instabilität

Der rel. hohe Steuerstrom von Bipolar-Transistoren kann durch Hintereinanderschaltung von zwei Transistoren reduziert werden:

Darlington-Schaltung

Komplementäre Darlington-Schaltung

Nachteile:

- erhöhte Sättigungsspannung
- große Ausschaltzeit, da der Basisstrom des Transistors T₂ nicht rückwärts fließen kann. Die Ausschaltzeit kann durch den Ableitwiderstand R_A verkürzt werden, wenn ein nennenswerter Anteil des Kollektorstromes von T₁ über den Ableitwiderstand fließt. Dies reduziert allerdings die Stromverstärkung.

2.1.2 Leistungs-MOSFET

Großsignalkenngrößen bei niedrigen Frequenzen

Vierpolgleichungen in Sourceschaltung (bei MOSFETs nur Leitwertform) für n-Kanal-MOSFETs (bei p-Kanal-MOSFETs kehren sich die Vorzeichen aller Spannungen und Ströme um):

$$I_{G} = f_{L} \left(U_{GS}, U_{DS} \right)$$

 $I_{D} = g_{L} (U_{GS}, U_{DS})$

Diese nichtlinearen Gleichungen werden i. a. als Kennlinienfelder in den Datenblättern angegeben (s. nächste Seite).

Näherungsweise analytische Beschreibung:

$$\begin{split} I_{G} &\approx 0 \\ I_{D} &\approx \frac{1}{2} \cdot KP \cdot \frac{W}{L} \cdot (U_{GS} - U_{th})^{2} & \text{im Sättigur} \\ I_{D} &\approx KP \cdot \frac{W}{L} \cdot (U_{GS} - U_{th}) \cdot U_{DS} \approx \frac{U_{DS}}{R_{DSon}} & \text{im linearen} \end{split}$$

im Sättigungsbereich $U_{DS} > U_{GS}$ - U_{th}

im linearen Bereich $U_{DS} < U_{GS}$ - U_{th}

Übertragungskennlinien des n-Kanal-MOSFETs BUZ22:

Ausgangskennlinien des n-Kanal-MOSFETs BUZ22:

Kleinsignal-Ersatzschaltbild des MOSFETs

Typ. Parameter von Leistungs-MOSFETs:

Größe	Bedeutung	typ. Wert
U _{th}	Schwellenspannung	2V4V
L	Gatelänge	1µm
W	Gateweite	1mm1m
μ	Beweglichkeit	0.05m ² /Vs für n-Kanal-Transistoren
		0.017m ² /Vs für p-Kanal-Transistoren
ε _r	Dielektrizitätskonstante von SiO ₂	3.9
t _{ox}	Dicke des Gateoxids	20nm100nm
C'ox	Gateoxidkapazität pro Fläche	$C'_{ox} = \epsilon_r \cdot \epsilon_0 / t_{ox}$
		$(1.7 \text{fF}/\mu \text{m}^2 \text{ bei } t_{\text{ox}} = 20 \text{nm})$
KP	Steuerfaktor	$KP = \mu \cdot C'_{ox}$
		$30\mu A/V^2$ für n-KanT. bei t _{ox} = 60nm
		10μA/V ² für n-KanT. bei t _{ox} = 60nm
λ	Kanallängenmodulationsparameter	0.05/V bei 1µm Kanallänge

Vorteile:

niedriger Steuerstrom (nur AC) kleine Schaltzeiten thermisch stabil Nachteile:

rel. große Steuerspannung rel. niedrige Steilheit Durchbruchspannung begrenzt (1000V)

2.2 Lineare Leistungsverstärker

sind Lineare Leistungsverstärker heute üblicherweise aus einem Operationsverstärker und einer Leistungs-Transistorschaltung (LTS) aufgebaut. Die LTS besitzt meist eine Spannungsverstärkung AITS von etwas weniger als 1 und eine hohe bis sehr hohe Stromverstärkung B. Der Ausgangsstrom kann in der Größenordnung 10-100A liegen und ist durch die Strombelastbarkeit der Leistungstransistoren und durch die Verlustleistung in den Leistungstransistoren begrenzt. Der Operationsverstärker vergleicht einen Bruchteil k der Spannung am Ausaang der LTS mit seiner Eingangsspannung und steuert die LTS so an, dass die beiden Spannungen gleich sind. Dadurch wird eine Spannungsverstärkung von 1/k erzielt und evtl. Nichtlinearitäten der LTS werden weitgehend eliminiert:

Wenn in Spezialfällen eine invertierende LTS verwendet wird (A<0), muss die Rückkopplung auf den nicht-invertierenden Eingang des OPV erfolgen, damit Gegenkopplung erzielt wird.

Die Versorgungsspannungen von OPV und LTS können unterschiedlich sein. Der Wirkungsgrad der LTS ist bei Vollaussteuerung am höchsten. Andererseits muss für Vollaussteuerung die Ausgangsspannung des OPV mindestens die Versorgungsspannungen V_{T+} und V_{T-} der LTS erreichen. Dies kann entweder mit rail-to-rail-OPVs erreicht werden oder mit eigenen, höheren Versorgungsspannungen V₊ und V₋ für den OPV.

Die Nichtlinearitäten der LTS werden durch den OPV um den Faktor der Schleifenverstärkung g reduziert. Die Schleifenverstärkung g ist das Produkt aus der Spannungsverstärkung A_{OPV} des OPV (typ. 10⁵), der Spannungsverstärkung A_{LTS} der LTS (typ. 1) und des Rückkoppelfaktors k: $g = A_{OPV} \cdot A_{LTS} \cdot k$

Um eine möglichst hohe Schleifenverstärkung zu erzielen wird deshalb oft mit k=1 ($R_N = 0, R_1 = \infty$) gearbeitet. Die benötigte Spannungsverstärkung wird dann mit einer OPV-Vorverstärkerschaltung realisiert. Die Spannungsverstärkung des OPV beginnt allerdings bereits bei rel. niedrigen Frequenzen (typ. 10Hz-100Hz) mit 20dB/Dekade zu sinken und erreicht bei der Transitfrequenz des OPV den Wert 1. Dadurch nimmt die Linearität der Gesamtschaltung mit zunehmender Frequenz ab.

2.2.1 Emitter- und Sourcefolger im A-Betrieb

Übertragungskennlinie:

 $U_a \approx U_s - U_{BE}$

$$U_a \approx U_s - U_{th}$$

Einfache Transistor-Stromquelle:

Differentieller Ausgangswiderstand: $r_a \approx r_{CE} \cdot \left(1 + \frac{\beta \cdot R_E}{r_{BE} + R_E}\right)$

Mindestspannung:

 $U_{Cmin}\approx 0.9V...1.4V$

Im einfachsten Fall kann auch ein Widerstand R_C als Stromquelle benutzt werden $(I_0 = U_C/R_C, r_a = R_C)$:

Ausgangsspannung U_{amin} bei Mindestspannung U_{Cmin} der Stromquelle bzw. Widerstand R_C als Stromquelle:

$$\mathbf{U}_{amin} = max \left[-\mathbf{R}_{L} \cdot \mathbf{I}_{0}, \ \frac{\mathbf{R}_{L} \cdot \mathbf{I}_{0}}{\mathbf{R}_{L} \cdot \mathbf{I}_{0} + \mathbf{U}_{Cmin}} \cdot \mathbf{V}_{T}, \mathbf{U}_{smin} - \mathbf{U}_{BE} \ bzw. \ \mathbf{U}_{smin} - \mathbf{U}_{th} \right]$$

bzw.

$$U_{amin} = max \left[\frac{R_{L}}{R_{L} + R_{C}} \cdot V_{T}, U_{smin} - U_{BE} bzw. U_{smin} - U_{th} \right]$$

Ausgangsspannung U_{amax} bei Ansteuerspannung U_{smax} und Ansteuerstrom I_{smax}: $U_{amax} \approx min[U_{smax} - U_{BE}, R_{L} \cdot (B \cdot I_{smax} - I_{0}), V_{T_{+}} - U_{CEsat}]$

bzw.

$$U_{amax} \approx min \left[U_{smax} - U_{BE}, \frac{R_{L}}{R_{L} + R_{C}} \cdot V_{T-} + \left(R_{L} / / R_{C} \right) \cdot B \cdot I_{Smax}, V_{T+} - U_{CEsat} \right]$$
$$U_{amax} \approx min \left[U_{smax} - U_{th}, \frac{R_{L}}{R_{L} + R_{DSon}} \left(V_{T+} - R_{DSon} \cdot I_{0} \right) \right]$$

bzw.

$$U_{a max} \approx min \left[U_{s max} - U_{th}, \frac{R_{L}}{R_{L} + R_{DSon}} \left(V_{T+} - R_{DSon} \cdot \frac{V_{T+} - V_{T-}}{R_{C}} \right) \right]$$

Maximaler Strom durch Transistor: $I_{max} = \frac{U_{a max}}{R_L} + I_0$ bzw. $I_{max} = \frac{U_{a max}}{R_L} + \frac{U_{a max} - V_{T-}}{R_C}$

Erforderlicher AC-Ansteuerstrom: $\hat{l}_{s} \approx 2\pi \cdot f \cdot C_{e} \cdot \hat{U}_{s}$

$$C_{e} \approx C_{BC} + \frac{C_{BE}}{1 + S \cdot R_{L}} \qquad \qquad C_{e} \approx C_{GD} + \frac{C_{GS}}{1 + S \cdot R_{L}}$$

TW 11.05.05 ST_2.doc

Leistungsbilanz bei sinusförmiger Aussteuerung: $U_a(t) = U_{a0} + \hat{u}_a \cdot \sin \omega t$

$$\begin{array}{ll} \mbox{Verlustleistung im Transistor:} & {\mathsf{P}_v}^{\mathsf{T}} = ({\mathsf{V}_{\mathsf{T}+}} - {\mathsf{U}_{a0}}) \cdot \left({\mathsf{I}_0} + \frac{{\mathsf{U}_{a0}}}{{\mathsf{R}_L}} \right) - \frac{1}{2} \cdot \frac{{{\hat{u}_a}}^2}}{{\mathsf{R}_L}} \\ & \mbox{bzw.} \\ {\mathsf{P}_v}^{\mathsf{T}} = \frac{({\mathsf{V}_{\mathsf{T}+}} - {\mathsf{U}_{a0}}) \cdot {\mathsf{U}_{a0}}}{{\mathsf{R}_L} - {\mathsf{(V}_{\mathsf{T}+}} - {\mathsf{U}_{a0}}) \cdot {\mathsf{V}_{\mathsf{T}-}}}{{\mathsf{R}_C}} - \frac{1}{2} \cdot \frac{{{\hat{u}_a}}^2}}{{\mathsf{R}_L} / {\mathsf{R}_C}} \\ \mbox{Verlustleistung in der Stromquelle:} & {\mathsf{P}_v}^{\mathsf{C}} = ({\mathsf{U}_{a0}} - {\mathsf{V}_{\mathsf{T}-}}) \cdot {\mathsf{I}_0} \\ & \mbox{bzw.} \\ {\mathsf{P}_v}^{\mathsf{C}} = \frac{({\mathsf{U}_{a0}} - {\mathsf{V}_{\mathsf{T}-}})^2}{{\mathsf{R}_C}} + \frac{1}{2} \cdot \frac{{{\hat{u}_a}}^2}}{{\mathsf{R}_C}} \\ \mbox{Leistung im Lastwiderstand:} & {\mathsf{P}^{\mathsf{L}}} = \frac{{\mathsf{U}_{a0}}^2}{{\mathsf{R}_L}} + \frac{1}{2} \cdot \frac{{{\hat{u}_a}}^2}{{\mathsf{R}_L}} = {\mathsf{P}_{Dc}}^{\mathsf{L}} + {\mathsf{P}_{Ac}}^{\mathsf{L}} \\ \mbox{Wirkungsgrad:} & {\mathsf{\eta}} = \frac{{\mathsf{P}^{\mathsf{L}}}}{{\mathsf{P}^{\mathsf{L}}} + {\mathsf{P}_v}^{\mathsf{C}} + {\mathsf{P}_v}^{\mathsf{T}}} = \frac{{\mathsf{U}_{a0}}^2 + {{\hat{u}_a}}^2/2}{({\mathsf{V}_{\mathsf{T}-}} - {\mathsf{V}_{\mathsf{T}-}}) \cdot {\mathsf{R}_L} \cdot {\mathsf{I}_0} + {\mathsf{V}_{\mathsf{T}+}} \cdot {\mathsf{U}_{a0}}} \\ \mbox{Dzw.} \\ \mbox{\eta} = \frac{\frac{{\mathsf{U}_{a0}}^2}{{\mathsf{P}^{\mathsf{L}}} + {\mathsf{P}_v}^{\mathsf{C}} + {\mathsf{P}_v}^{\mathsf{T}}}}{{\mathsf{R}_L} / {\mathsf{R}_C}}} \\ \mbox{AC-Wirkungsgrad:} & {\mathsf{\eta}_{aC}} = \frac{{\mathsf{P}_{AC}}^{\mathsf{L}}}{{\mathsf{P}^{\mathsf{L}}} + {\mathsf{P}_v}^{\mathsf{C}} + {\mathsf{P}_v}^{\mathsf{T}}} = \frac{{{\hat{u}_a}}^2/2}{({\mathsf{V}_{\mathsf{T}-}} - {\mathsf{V}_{\mathsf{T}-}}) \cdot {\mathsf{R}_L} \cdot {\mathsf{I}_0} + {\mathsf{V}_{\mathsf{T}+}} \cdot {\mathsf{U}_{a0}}} \\ \\ \mbox{Dzw.} \\ \mbox{\eta}_{AC} = \frac{{\mathsf{P}_{AC}}^{\mathsf{L}}}{{\mathsf{P}^{\mathsf{L}}} + {\mathsf{P}_v}^{\mathsf{C}} + {\mathsf{P}_v}^{\mathsf{T}}} = \frac{{{\hat{u}_a}}^2/2}{({\mathsf{V}_{\mathsf{T}-}} - {\mathsf{V}_{\mathsf{T}-}}) \cdot {\mathsf{R}_L} \cdot {\mathsf{I}_0} + {\mathsf{V}_{\mathsf{T}+}} \cdot {\mathsf{U}_{a0}}} \\ \\ \mbox{Dzw.} \\ \mbox{\eta}_{AC} = \frac{{\mathsf{P}_{AC}}^{\mathsf{L}}}}{{\mathsf{P}^{\mathsf{L}}} + {\mathsf{Q}_{a0}}^{\mathsf{L}}} - \frac{({\mathsf{V}_{\mathsf{T}-}} - {\mathsf{V}_{\mathsf{T}-}} + {\mathsf{U}_{a0}}) \cdot {\mathsf{V}_{\mathsf{T}-}}} {{\mathsf{R}_C}} \\ \end{array}$$

Der AC-Wirkungsgrad beträgt im A-Betrieb maximal 25%.

Vorteil des A-Betriebes: ausgezeichnete Linearität

Nachteil des A-Betriebes: niedriger Wirkungsgrad

2.2.2 Komplementärer Emitter- und Sourcefolger im B-Betrieb

Übertragungskennlinie:

Der B-Betrieb führt zu Übernahmeverzerrungen, die auch der OPV nicht vollständig ausregeln kann, da er hierzu eine unendlich große Slewrate s_r benötigen würde. Es verbleibt ein Spannungssprung ΔU_a am Ausgang, wenn zum Einschalten des Transistors eine Steuerspannung ΔU_s benötigt wird:

$$\Delta U_{a} \approx \frac{2 \cdot \Delta U_{s}}{s_{r}} \cdot \frac{dU_{a}}{dt} \bigg|_{U_{a}=0} \text{ bzw. bei sinusförmigen Signalen } \Delta U_{a} \approx \frac{2 \cdot \Delta U_{s}}{s_{r}} \cdot 2\pi \cdot f_{max} \cdot \hat{u}_{a}$$

Ausgangsspannung U_{amin} bei Ansteuerspannung U_{smin} und Ansteuerstrom I_{smin}:

$$\begin{split} U_{amin} &\approx max \Big[U_{smin} - U_{BE}^{\ p}, \ R_{L} \cdot B^{p} \cdot I_{smin}, \ V_{T-} - U_{CEsat}^{\ p} \Big] \\ & U_{amin} \approx max \Bigg[U_{smin} - U_{th}^{\ p}, \ \frac{R_{L}}{R_{L} + R_{DSon}^{\ p}} \cdot V_{T-} \Bigg] \end{split}$$

Ausgangsspannung U_{amax} bei Ansteuerspannung U_{smax} und Ansteuerstrom I_{smax}:

$$U_{amax} \approx min \left[U_{smax} - U_{BE}^{n}, R_{L} \cdot B^{n} \cdot I_{smax}, V_{T+} - U_{CEsat}^{n} \right]$$
$$U_{amax} \approx min \left[U_{smax} - U_{th}^{n}, \frac{R_{L}}{R_{L} + R_{DSon}^{n}} \cdot V_{T+} \right]$$

Maximaler Strom durch Transistoren: $I_{max}^{n} = \frac{U_{amax}}{R_{L}}$ bzw. $I_{max}^{p} = \frac{U_{amin}}{R_{L}}$

 $\label{eq:entropy} \text{Erforderlicher AC-Ansteuerstrom:} \quad \hat{I}_{_{S}} \approx 2\pi \cdot f \cdot C_{_{\rm e}} \cdot \hat{U}_{_{S}}$

$$C_{e} \approx C_{BC} + \frac{C_{BE}}{1 + S \cdot R_{L}} \qquad \qquad C_{e} \approx C_{GD} + \frac{C_{GS}}{1 + S \cdot R_{L}}$$

Im Nulldurchgang ist für die Umladung der Eingangskapazität ein von der Slewrate s_r des ansteuernden OPV abhängiger Strompuls mit Höhe I_p und Dauer t_p erforderlich:

$$\begin{split} I_{p} &\approx \left(C_{BE} + C_{BC}\right) \cdot s_{r} & I_{p} &\approx \left(C_{GS} + C_{GD}\right) \cdot s_{r} \\ t_{p} &\approx \frac{U_{BE}^{-n} - U_{BE}^{-p}}{s_{r}} & t_{p} &\approx \frac{U_{th}^{-n} - U_{th}^{-p}}{s_{r}} \end{split}$$

Leistungsbilanz bei sinusförmiger Aussteuerung: $U_a(t) = \hat{u}_a \cdot \sin \omega t$

Verlustleistung im n-Transistor:
$$P_v^{Tn} = \frac{V_{T+} \cdot \hat{u}_a}{\pi \cdot R_L} - \frac{1}{4} \cdot \frac{\hat{u}_a^2}{R_L}$$
Max. Verlustleistung im n-Transistor: $P_{vmax}^{Tn} = \frac{V_{T+}^2}{\pi^2 \cdot R_L}$ bei $\hat{u}_a = \frac{2 \cdot V_{T+}}{\pi}$ Verlustleistung im p-Transistor: $P_v^{Tp} = -\frac{V_{T-} \cdot \hat{u}_a}{\pi \cdot R_L} - \frac{1}{4} \cdot \frac{\hat{u}_a^2}{R_L}$ Max. Verlustleistung im p-Transistor: $P_v^{Tp} = -\frac{V_{T-}^2}{\pi^2 \cdot R_L}$ bei $\hat{u}_a = -\frac{2 \cdot V_{T-}}{\pi}$ Leistung im Lastwiderstand: $P^L = \frac{1}{2} \cdot \frac{\hat{u}_a^2}{R_L}$ Wirkungsgrad: $\eta = \frac{P^L}{P^L + P_v^{Tn} + P_v^{Tp}} = \frac{\pi \cdot \hat{u}_a}{2 \cdot (V_{T+} - V_{T-})}$

Max. Wirkungsgrad bei Vollaussteuerung ($V_{T_+} = -V_{T_-} = \hat{u}_a$): $\eta^{max} = \frac{\pi}{4} \approx 0.785$

Vorteil des B-Betriebes: hoher Wirkungsgrad

Nachteil des B-Betriebes: schlechte Linearität

2.2.3 Komplementärer Emitter- und Sourcefolger im AB-Betrieb

Übertragungskennlinie: $U_a \approx U_s$

Durch die Vorspannung der Transistoren sind die Übernahmeverzerrungen im AB-Betrieb bereits ohne OPV stark reduziert. Wenn trotz der Vorspannung die Transistoren erst bei einer Steuerspannung ΔU_s einschalten, gelten für die Slewrate die gleichen Überlegungen wie im B-Betrieb. (ΔU_s ist jedoch im AB-Betrieb wesentlich kleiner als im B-Betrieb).

Die Vorspannung kann über den Biasstrom I_0 und (beim MOSFET) über die Anzahl der Dioden eingestellt werden. Statt der Diodenkette kann beim MOSFET auch ein als Diode geschalteter Bipolar-Transistor mit zwei Widerständen verwendet werden. Bei Vernachlässigung des Basisstromes fließt durch beide Widerstände ungefähr der gleiche Strom U_{BE}/R₂.

TW 26.04.04 ST_2

Einfache Transistor-Stromquellen:

Differentieller Ausgangswiderstand: r

$$r_{a} \approx r_{CE} \cdot \left(1 + \frac{p \cdot n_{E}}{r_{BE} + R_{E}}\right)$$

0 D

Mindestspannung:

 $U_{Cmin}\approx 0.9V\ldots 1.4V$

Als Stromquelle für den Biasstrom kann im einfachsten Fall ein Widerstand R_C verwendet werden. Dies hat jedoch den Nachteil, dass der Biasstrom und der Innenwiderstand der Stromquelle nicht unabhängig voneinander gewählt werden können:

Wenn die Vorspannung zu groß gewählt wird, besteht die Gefahr, dass beide Transistoren leiten und ein Querstrom fließt. Der Querstrom reduziert den Wirkungsgrad und kann bei Bipolar-Transistoren zur Zerstörung durch sog. "thermal runaway" Bipolar-Transistoren Heissleiter führen. Da sind. führt ein Temperaturanstieg durch einen Querstrom zu einem noch höheren Querstrom, der wiederum zu einer noch höheren Temperatur führt. Ob dieser Prozess zum Stillstand kommt, hängt von der Wärmeabfuhr durch den thermischen Widerstand ab. Der Gefahr des "thermal runaway" kann durch in Reihe zu den Emittern geschaltete kleine Widerstände begegnet werden, die allerdings den Wirkungsgrad reduzieren.

Ausgangsspannung U_{amin} bei Ansteuerspannung U_{smin} und Stromquelle mit Biasstrom I₀ und Mindestspannung U_{Cmin} bzw. Widerstand R_C:

$$\begin{split} U_{amin} &\approx max \Bigg[U_{smin}, \ -R_{L} \cdot B^{p} \cdot I_{0}, \ \frac{B^{p} \cdot R_{L} \cdot I_{0}}{B^{p} \cdot R_{L} \cdot I_{0} + U_{Cmin}} \cdot \left(V_{Q-} - U_{BE}^{p}\right), \ V_{T-} - U_{CEsat}^{p} \Bigg] \\ bzw. \\ U_{amin} &\approx max \Bigg[U_{smin}, \ \frac{R_{L}}{R_{L} + R_{C} / B^{p}} \cdot \left(V_{Q-} - U_{BE}^{p}\right), \ V_{T-} - U_{CEsat}^{p} \Bigg] \\ & U_{amin} &\approx max \Bigg[U_{smin}, \ \frac{R_{L}}{R_{L} + R_{C} / B^{p}} \cdot \left(V_{Q-} - U_{BE}^{p}\right), \ V_{D-} - U_{CEsat}^{p} \Bigg] \end{split}$$

Ausgangsspannung U_{amax} bei Ansteuerspannung U_{smax} und Stromquelle mit Biasstrom I₀ und Mindestspannung U_{Cmin} bzw. Widerstand R_C:

$$U_{amax} \approx min \left[U_{smax}, R_{L} \cdot B^{n} \cdot I_{0}, \frac{B^{n} \cdot R_{L} \cdot I_{0}}{B^{n} \cdot R_{L} \cdot I_{0} + U_{Cmin}} \cdot \left(V_{Q+} - U_{BE}^{n} \right), V_{T+} - U_{CEsat}^{n} \right] bzw.$$

Maximaler Strom durch Transistoren: $I_{max}^{n} = \frac{U_{amax}}{R_{L}} + Querstrom$ $I_{max}^{p} = \frac{U_{amin}}{R_{L}} - Querstrom$

 $\label{eq:entropy} \text{Erforderlicher AC-Ansteuerstrom:} \quad \hat{I}_{_{S}} \approx 2\pi \cdot f \cdot C_{_{B}} \cdot \hat{U}_{_{S}}$

$$C_{e} \approx C_{BC} + \frac{C_{BE}}{1 + S \cdot R_{L}} \qquad \qquad C_{e} \approx C_{GD} + \frac{C_{GS}}{1 + S \cdot R_{L}}$$

Die Leistungsbilanz bei sinusförmiger Aussteuerung ist identisch mit dem B-Betrieb.

Die Spannung V_Q muss bei der Verwendung von MOSFETs betragsmäßig deutlich größer als die Versorgungsspannung V_T der Leistungstransistoren sein, weil sonst wegen der rel. großen Schwellenspannung die Aussteuerung und damit der Wirkungsgrad empfindlich verringert wird. Bei Wechselstromverstärkern gibt es eine elegante Möglichkeit, die Spannung V_Q durch das sog. Bootstrap-Prinzip dynamisch zu vergrößern:

Die Bootstrap-Kapazität C_{B+} wird über die Diode und den Vorwiderstand R_{B+} im Minimum der Ausgangsspannung auf nahezu $2 \cdot V_T$ aufgeladen. Da sich die Kapazität über die Diode nicht entladen kann, steht im Maximum der Ausgangsspannung eine sehr viel höhere Spannung als V_{T+} für die Versorgung der Stromquelle zur Verfügung. Das gleiche Argument gilt mit umgekehrten Vorzeichen für C_{B-} .

Die Bootstrap-Kapazitäten sollten so dimensioniert werden, dass sie sich bei der unteren Grenzfrequenz f_{min} in einer Periode durch den Strom I_0 der Stromquellen nicht nennenswert entladen:

$$C_{\scriptscriptstyle B} >> \frac{I_{\scriptscriptstyle 0}}{\left|V_{\scriptscriptstyle T}\right| \cdot f_{\scriptscriptstyle min}}$$

Die Vorwiderstände sollten so dimensioniert werden, dass sie bei der oberen Grenzfrequenz f_{max} eine Aufladung der Kapazitäten in einer Periode zulassen:

$$R_{B} < \frac{1}{2 \cdot C_{B} \cdot f_{max}}$$

Vorteile des AB-Betriebes: hoher Wirkungsgrad, gute Linearität

Nachteile des AB-Betriebes: Gefahr von Querströmen, begrenzte Aussteuerung

Sowohl Emitterfolger als auch Sourcefolger zeigen eine ausgeprägte Schwingneigung, wenn die Impedanz der Collector- bzw. Drainzuleitung nicht durch Abblockkondensatoren ausreichend niedrig gehalten wird.

Die Schwingneigung wird zusätzlich verringert, wenn der ansteuernde OPV über einen Widerstand von ca. 100Ω angeschlossen wird. Dies reduziert die Verstärkung der unerwünschten Oszillator-Schleife.

In der Praxis werden bei Leistungs-Verstärkern oft zusätzliche Maßnahmen zur Strom-, Leistungs- und Übertemperaturbegrenzung vorgesehen.

Stromgrenze im Vierquadrantenbetrieb bei induktiven und kapazitiven Lasten:

Die einfachste Schaltung ist eine aussteuerungsunabhängige Strombegrenzung. Aus Zeitgründen wird für aufwendigere Schaltungen auf die Literatur verwiesen.

2.3 Lineare Spannungsregler

Die Regelung von Gleichspannungen auf einen konstanten Wert ist eine besonders wichtige Aufgabe, da sowohl analoge als auch digitale Schaltungen in der Regel eine gut stabilisierte Spannung mit genau definierter Größe benötigen. Da gleichgerichtete Spannungen aus ökonomischen Gründen (begrenzte Pulsbelastung der Dioden und des Transformators, begrenzte Größe des Glättungskondensators bzw. der Glättungsdrossel), noch eine Welligkeit von ca. 10% besitzen und bei Belastung mehr oder weniger absinken, müssen sie geregelt werden. Bei großen Leistungen und geringen Anforderungen an das Rauschen der Spannungsversorgung (digitale Schaltungen) verwendet man bevorzugt Schaltregler (s. Kap. 2.4). Bei kleinen bis mittleren Leistungen und hohen Anforderungen an das Rauschen der Spannungsversorgung (analoge Schaltungen) verwendet man sog. Linearregler. Linearregler sind Leistungsverstärker im B-Betrieb, bei denen einer der beiden Endstufentransistoren fehlt und die Soll-Spannung am Eingang des OPV mit einem Referenzelement, erzeugt wird:

Als Spannungsversorgung für den OPV und den Endstufentransistor muss die wellige Gleichspannung U_G verwendet werden. Für die Versorgung des Referenzelementes kann die geregelte Ausgangsspannung verwendet werden, wenn U_a>U_{ref} gilt und das Anlaufen sichergestellt wird.

Die Referenzspannung wird durch eine sog. Bandgap-Referenz erzeugt. Diese Bandgap-Referenz besitzt einen extrem niedrigen Temperaturkoeffizienten (<10ppm/K) und eine Referenzspannung, die dem Bandabstand von Silizium entspricht (\approx 1.2V, Toleranz typ. 0.1%).

Der maximale Ausgangsstrom, die maximale Verlustleistung im Transistor und die Temperatur werden durch zusätzliche Schutzschaltungen begrenzt.

Solche Regler sind als integrierte Schaltungen in großer Vielfalt für positive und negative Spannungen erhältlich.

Es gibt im wesentlichen drei Typen:

• Festspannungsregler

Bei diesen Reglern sind die Widerstände R_1 und R_N im IC enthalten und der Regler besitzt die drei Anschlüsse in, out und Masse. Beispiel: Serie 78xx für positive und 79xx für negative Ausgangsspannungen (xx steht für die Spannung).

- Einstellbare Spannungsregler mit 4 Anschlüssen
 Bei diesen Reglern ist nur der Widerstand R_N im IC enthalten, während der Widerstand R₁ extern zwischen den zusätzlichen Anschluss ref und Masse gelegt wird. Beispiel: Serie 78G für positive und 79G für negative Ausgangsspannungen.
- Einstellbare Spannungsregler mit 3 Anschlüssen Bei diesen Reglern werden beide Widerstände extern angeschlossen. Durch ein modifiziertes Schaltungsprinzip kommen diese Regler ohne Masseanschluss aus:

Am Anschluss ref stellt sich bei idealem OPV die Spannung U_a - U_{ref} ein. Diese Spannung ist bis auf die kleine Verfälschung durch den Strom des Referenzelementes (typ. 50µA) gleich der von R₁ und R_N geteilten Ausgangsspannung U_a·R_N/(R₁ + R_N). Damit ergibt sich die gleiche Beziehung zwischen U_a und U_{ref} wie vorher (typischer Wert für R₁: 240 Ω).

Beispiel: Serie 317 für positive und 337 für negative Ausgangsspannungen.

Wegen der bereits erwähnten Schwingneigung von Emitter- und Sourcefolgern ist auch bei Spannungsreglern eine Abblockung der Eingangs-Gleichspannung U_G mit einem Keramikkondensator in der Größenordnung von 100nF erforderlich.

Bei Belastung des Ausganges mit Stromstößen sind am Ausgang ein Keramikkondensator in der gleichen Größenordnung sowie zusätzlich ein Tantal-Elko mit ca. 10μ F... 100μ F empfehlenswert, die die Stoßbelastung des Ausganges reduzieren (Glättungskondensatoren).

Wichtige Kenngrößen eines Spannungsreglers sind die Ausgangsspannung, der maximale Ausgangsstrom, die maximale Verlustleistung und der Spannungsverlust zwischen Ein- und Ausgang (sog. Drop-Out-Spannung U_{DO}).

Der kleinste Wert der welligen Eingangsspannung U_G muß mindestens um die Drop-Out-Spannung größer als die geregelte Ausgangsspannung sein, damit die Regelung funktioniert.

Verlustleistung im Spannungsregler: $P_v = (U_G - U_a) \cdot I_a$

Minimale Verlustleistung:

$$P_{V \min} = U_{DO} \cdot I_{a}$$

Maximaler Wirkungsgrad:

$$\eta_{max} = \frac{U_{a} \cdot I_{L}}{(U_{a} + U_{DO}) \cdot I_{L}} = \frac{U_{a}}{U_{a} + U_{DO}} = \frac{1}{1 + U_{DO}/U_{a}}$$

Eine niedrige Dropout-Spannung ist deshalb besonders bei kleinen Ausgangsspannungen (z.B. 3V) sehr wichtig.

1

Spannungsregler mit besonders niedriger Drop-Out-Spannung werden als Low-Drop-Out (LDO)-Regler bezeichnet. Dies wird z.B. durch eine Ladungspumpe erreicht, die dem OPV eine Versorgungsspannung $2 \cdot U_G$ zur Verfügung stellt, so dass er den Leistungstransistor voll einschalten kann. Nachteilig daran ist, dass der Oszillator der Ladungspumpe hochfrequentes Rauschen erzeugt.

Eine andere Möglichkeit, einen LDO-Regler zu realisieren, ist die Verwendung eines komplementären Leistungstransistors in Emitter- bzw. Sourceschaltung:

Nachteilig an dieser Schaltung ist, dass bei der meistens benötigten positiven Ausgangsspannung der schlechtere Transistortyp benötigt wird.

LDO-Regler benötigen am Ausgang immer eine Mindestkapazität, da sonst die Spannungsverstärkung der Emitter- bzw. Sourceschaltung ($A_{LTS} = -S \cdot Z_L$, wobei S die Steilheit und Z_L die Lastimpedanz ist) zu groß wird und die Regelschleife instabil wird. Die Mindestkapazität muss dem Datenblatt entnommen werden.

2.4 Schaltregler

Hochintegrierte Digitalschaltungen mit mehreren Millionen Transistoren und hohen Taktfrequenzen stellen hohe Anforderungen an die Stromversorgung. Ein Pentium4-Prozessor mit 1.5GHz Taktfrequenz arbeitet mit einer Versorgungsspannung von 1.7V und benötigt einen Strom von ca. 40A. Linearregler mit vorgeschaltetem Netztransformator und Gleichrichter sind zu unwirtschaftlich, um solche Leistungen bereitzustellen. Nach dem vorherigen Abschnitt ist klar, dass die Verlustleistung des Linearreglers hauptsächlich dadurch verursacht wird, dass die überschüssige Eingangsspannung am Regeltransistor abfällt. Ein Transistor erreicht aber seine niedrigsten Verluste nur im voll ein- bzw. ausgeschalteten Zustand. Beim Schaltregler wird diese Beobachtung ausgenutzt und die Eingangs-Gleichspannung $U_{\rm G}$ wird mit einem MOSFET mit einer Frequenz von ca. 100kHz voll ein oder ausgeschaltet und dadurch in eine Pulsspannung U_P umgewandelt.

Die einfachste Schaltung ist ein sog. Abwärtswandler nach folgendem Prinzip:

Der Schalter S wird mit einer Periode T zwischen der Eingangs-Gleichspannung U_G und Masse hin- und hergeschaltet. Dadurch entsteht hinter dem Schalter eine Pulsspannung U_P mit einer Pulshöhe U_G , einer Periode T und einer Pulsbreite t_{ein} , die gleich der Zeit ist, während der der Schalter mit U_G verbunden ist.

Wenn man annimmt, dass die Kapazität genügend groß (typ.100µF) und die Schaltfrequenz genügend hoch (typ. 100kHz) ist, ist die Ausgangsspannung U_a nahezu eine Gleichspannung. Wenn außerdem die Induktivität genügend groß (typ. 100µH) ist, ist auch der Strom I_L nahezu ein Gleichstrom mit einer kleinen Änderung ΔI_L . Diese Änderung kann aus der Grundgleichung der Induktivität (U_L = L $\cdot \frac{\Delta I_L}{\Delta t}$) für beide Zeitabschnitte einer Periode berechnet werden:

Zeitabschnitt t_{ein}:
$$\Delta I_{L,ein} = \frac{U_L \cdot \Delta t}{L} \approx \frac{(U_G - U_a) \cdot t_{ein}}{L}$$

Zeitabschnitt t_{aus}: $\Delta I_{L,aus} = \frac{U_L \cdot \Delta t}{L} \approx \frac{(0 - U_a) \cdot (T - t_{ein})}{L}$

Im eingeschwungenen Zustand muss die Summe beider Änderungen 0 sein:

$$\begin{split} \Delta I_{\text{L,ein}} + \Delta I_{\text{L,aus}} &= 0 \implies \left(U_{\text{G}} - U_{\text{a}} \right) \cdot t_{\text{ein}} - U_{\text{a}} \cdot \left(T - t_{\text{ein}} \right) = 0 \implies U_{\text{G}} \cdot t_{\text{ein}} - U_{\text{a}} \cdot T = 0 \\ \implies U_{\text{a}} &= \frac{t_{\text{ein}}}{T} \cdot U_{\text{G}} \end{split}$$

Dieses Ergebnis kann man auch durch folgende Überlegung erhalten: Die Induktivität L und die Kapazität C bilden ein Tiefpass-Filter 2. Ordnung. Wenn die Zeitkonstante $\sqrt{L \cdot C}$ wesentlich größer ist als die Schaltperiode T, kann nur der Gleichspannungsanteil der Pulsspannung U_P an den Ausgang des Filters gelangen. Die Ausgangsspannung ist also im wesentlichen eine Gleichspannung mit einem Wert gleich dem Gleichspannungsanteil von U_P, der direkt aus der Skizze abgelesen werden kann und zum gleichen Ergebnis wie oben führt.

Die Höhe der Ausgangs-Gleichspannung kann somit in einfacher Weise durch die Einschaltzeit t_{ein} des Schalters gesteuert werden. Die Schaltfrequenz und damit die Periode T wird in der Regel konstant gehalten.

Der Schalter S wird in der Praxis mit einem Transistor und einer Diode realisiert:

Wenn der Transistor eingeschaltet ist, sperrt die Diode und der Strom fließt aus der Eingangsspannungsquelle über die Induktivität in den Kondensator und den Widerstand. Wenn der Transistor ausgeschaltet wird erzwingt die Induktivität ein Weiterfließen des Stromes über die Diode. Dadurch liegt der linke Anschluss der Induktivität ca. 0.7V unter Massepotential, was nahezu der Situation in der Prinzipschaltung entspricht, wo der Anschluss auf Masse lag.

Der Regler misst die Ausgangsspannung, vergleicht sie mit einem Sollwert und verstellt die Einschaltzeit des Transistors entsprechend. Der Regler kann digital als Microcontroller ausgeführt sein oder als analoge Regelschaltung. Im zweiten Fall gibt es integrierte Schaltregler, die den MOSFET, den Taktgenerator, den Regler und Schutzschaltungen gegen Übertemperatur und Überstrom enthalten. Die Steuerspannung für den MOSFET muss höher als die Eingangsgleichspannung sein und wird z. B. mit einer Ladungspumpe erzeugt.

Da der MOSFET nur im voll eingeschalteten oder voll ausgeschalteten Zustand betrieben wird, ist ein hoher Wirkungsgrad möglich (bis 95%). Die verbleibenden Verluste sind der Spannungsabfall am R_{DSon} des MOSFETs während t_{ein} , an der Diode während t_{aus} und die Schaltverluste im MOSFET beim Ein- und Ausschalten.

$$P_{V} \approx R_{\text{DSon}} \cdot {I_{a}}^{2} \cdot \frac{t_{\text{ein}}}{T} + U_{\text{D}} \cdot I_{a} \cdot \frac{t_{\text{aus}}}{T} + U_{\text{G}} \cdot I_{a} \cdot \frac{t_{\text{S}}}{T}$$

Um diese Verluste möglichst klein zu halten, müssen der Widerstand R_{DSon} des MOSFETs, die Flussspannung U_D der Diode und die Schaltzeit t_S möglichst klein sein. Zwischen der Anforderung an R_{DSon} und t_S muss ein Kompromiss geschlossen werden, da ein niedriger R_{DSon} eine große Gateweite erfordert, die zwangsläufig mit einer großen Gatekapazität verbunden ist und damit die Schaltzeit verlängert. In jedem Fall sollte jedoch die Ansteuerschaltung des MOSFETs so niederohmig wie möglich ausgeführt werden, um die Schaltzeit möglichst klein zu halten.

Als Dioden werden üblicherweise Schottkydioden verwendet, da sie besonders niedrige Flussspannungen besitzen ($U_S \approx 0.3V$) und sich sehr schnell ausschalten lassen ($t_{rr} \approx 30$ ns).

Da bei Schaltreglern große Ströme sehr schnell geschaltet werden, müssen EMV-Gesichtspunkte unbedingt beachtet werden. Die wichtigste Maßnahme besteht in einer möglichst starken räumlichen Begrenzung der hochfrequenten Stromanteile durch einen Abblockkondensator C_B am Eingang:

Bei ausreichender Größe von C_B ist der Zuleitungsstrom zum Abblockkondensator im wesentlichen ein Gleichstrom. Da auch der Strom durch die Speicherdrossel L im wesentlichen ein Gleichstrom ist, beschränkt sich der hochfrequente Strom auf den HF-Kreis aus Abblockkondensator, MOSFET und Freilaufdiode. Durch das Layout muss dieser Kreis so klein wie möglich gehalten werden. Bei hoher Anforderung an die EMV kann in die Zuleitung zum Abblockkondensator noch eine Drosselspule eingesetzt werden.

Im Abblockkondensator sollte wesentlich mehr Energie gespeichert sein als von der Last in einer Schaltperiode verbraucht wird:

$$\frac{C_{B} \cdot U_{G}^{2}}{2} >> U_{a} \cdot I_{a} \cdot T \qquad \Rightarrow \qquad C_{B} >> \frac{2 \cdot U_{a} \cdot I_{a} \cdot T}{U_{G}^{2}}$$

Damit ergeben sich für C_B Werte zwischen 100μ F und 10mF.

Die Eingangsspannung kann im Prinzip direkt die gleichgerichtete und geglättete Netzspannung sein. Aus Sicherheitsgründen wird jedoch meist eine Potentialtrennung durchgeführt. Dies kann durch einen Netztransformator vor dem Gleichrichter erfolgen. Wesentlich günstiger ist es jedoch, die Pulsspannung U_P zu transformieren. Da diese eine Frequenz von 100kHz besitzt, kann der Trafo theoretisch ein ca. 1000mal kleineres Volumen besitzen als ein 50Hz-Netztransformator.

Mit HF-Trafo wird aus dem Abwärtswandler der Eintaktflusswandler:

Wenn der Trafo ideal wäre, würde er keinen Magnetisierungsstrom benötigen und die zweite Primärwindung mit Diode D_3 wäre unnötig, ebenso die Diode D_2 . In diesem Fall ist die Schaltung völlig äquivalent zum Abwärtswandler: Wenn der Transistor eingeschaltet ist, liegt an der Speicherdrossel L eine Spannung U_G/ü. Wenn der Transistor ausgeschaltet ist, liefert der Trafo keinen Strom und die Speicherdrossel erzwingt das Weiterfließen des Stromes über die Freilaufdiode D₁. Dadurch liegt an der Drossel eine Spannung von ca. -0.7V. Dies ist die gleiche Situation wie beim Abwärtswandler, nur die Spannung ist um das Übersetzungsverhältnis ü kleiner:

$$U_{a} = \frac{t_{ein}}{T} \cdot \frac{U_{G}}{\ddot{u}}$$

Die zweite Primärwicklung und die Dioden D_2 und D_3 sind notwendig, um die bei einem realen Trafo durch den Magnetisierungsstrom im Trafo gespeicherte magnetische Energie beim Ausschalten des Transistors wieder abzubauen.

2.5 Schaltverstärker

Das Schaltregler-Prinzip kann auch für Verstärker mit sehr hohem Wirkungsgrad genutzt werden. Dazu wird die feste Referenzspannung durch die Signalspannung U_e ersetzt:

Das LC-Filter muss beim Schaltverstärker so dimensioniert werden, dass seine Grenzfrequenz gleich der höchsten Signalfrequenz f_{max} ist. Dadurch können die hochfrequenten Anteile bei der Taktfrequenz f_C und ihren Vielfachen nicht beliebig stark unterdrückt werden. Die Grundwelle als stärkster Bestandteil wird mit dem Faktor $(f_{max}/f_C)^2$ abgeschwächt. Da f_C aus praktischen Gründen nicht über ca. 300kHz erhöht werden kann, schränkt dies den nutzbaren Frequenzbereich ein.

Abschätzung des Signal-Rauschabstandes:

Die Grundwelle eines Rechtecksignals mit Höhe V_{T+} , Pulsdauer t_{ein} und Periode T hat eine Amplitude \hat{u}_1 :

$$\hat{u}_{1} = \frac{2 \cdot V_{T_{+}}}{\pi} \cdot sin\left(\frac{t_{ein}}{T} \cdot \pi\right) = \frac{2 \cdot V_{T_{+}}}{\pi} \cdot sin\left(\frac{U_{a}}{V_{T_{+}}} \cdot \pi\right)$$

Diese Amplitude wird durch das LC-Filter mit dem Faktor $(f_{max}/f_C)^2$ abgeschwächt. Damit ergibt sich ein Signal-Rausch-Verhältnis (SNR) von:

$$SNR|_{dB} = 20 \cdot \log \frac{U_{a}}{\frac{2 \cdot V_{T+}}{\pi} \cdot sin\left(\frac{U_{a}}{V_{T+}} \cdot \pi\right) \cdot \left(\frac{f_{max}}{f_{c}}\right)^{2}}$$

Der ungünstigste Fall liegt bei schwacher Aussteuerung ($U_a \ll V_{T+}/2$) vor:

$$sin\left(\frac{U_{a}}{V_{T_{+}}} \cdot \pi\right) \approx \frac{U_{a}}{V_{T_{+}}} \cdot \pi \implies SNR\big|_{dB} \approx 20 \cdot log\left[\frac{1}{2} \cdot \left(\frac{f_{C}}{f_{max}}\right)^{2}\right]$$

Bei einem Tonsignal mit $f_{max} = 10$ kHz und $f_C = 100$ kHz wird SNR $|_{dB} = 34$ dB, bei $f_{max} = 1$ kHz wird SNR $|_{dB} = 74$ dB

Vorteil: sehr hoher Wirkungsgrad Nachteil: begrenzter Signal-Rauschabstand

Die oben vorgestellte Schaltung kann natürlich nur positive Signale verstärken. Für bipolare Signale muss die Schaltung erweitert werden:

Bei positiven Signalspannungen schaltet Regler 1 den Transistor T₄ dauerhaft ein und stellt die Einschaltzeit des Transistors T₁ so ein, dass U_e = $\alpha \cdot U_a$ erreicht wird. Regler 2 schaltet bei positiven Signalspannungen den Leistungstransistor T₃ dauerhaft aus.

Bei negativen Signalspannungen schaltet Regler 2 den Transistor T₃ dauerhaft ein und stellt die Einschaltzeit des Transistors T₂ so ein, dass U_e = $\alpha \cdot U_a$ erreicht wird. Regler 1 schaltet bei negativen Signalspannungen den Leistungstransistor T₄ dauerhaft aus.

Wenn die Last nicht einseitig an Masse liegen muss, kann eine Brückenschaltung mit nur einer Versorgungsspannung verwendet werden:

Die Regler arbeiten genau wie vorher. Die in den Transistoren T_3 und T_4 enthaltenen Body-Dioden können als Freilaufdioden benutzt werden.

3 Operationsverstärker-Schaltungen

3.1 Frequenzverhalten und Einschwingverhalten

3.1.1 Frequenzgang

Wir betrachten ein zeitinvariantes, lineares System, dem wir eine sinusförmige Eingangsgröße mit der Frequenz f einprägen. Da das System linear ist, muss jede Ausgangsgröße nach einer gewissen Einschwingzeit ebenfalls sinusförmig mit der gleichen Frequenz variieren. Wenn wir Eingangs- und Ausgangsgröße als komplexe Amplitude mal e^{jot} darstellen, ist der Quotient zwischen Ausgangsgröße und Eingangsgröße eine zeitunabhängige, komplexe Zahl, die das Amplitudenverhältnis und die Phasenverschiebung zwischen Ausgangs- und Eingangsgröße angibt. Natürlich ist der Quotient bei jeder Frequenz anders und deshalb eine Funktion von j ω . Diese Funktion ist eine wichtige Systemeigenschaft und heisst Frequenzgang <u>H</u>(j ω):

 $\underline{H}(j\omega) = \frac{\text{komplexe Amplitude einer Ausgangsgröße bei Kreisfrequenz } \omega}{\text{komplexe Amplitude einer Eingangsgröße bei Kreisfrequenz } \omega}$

Da es eine Vielzahl von Eingangs- und Ausgangsgrößen gibt, hat ein System i.a. mehrere Frequenzgänge, die elektrisch, mechanisch, biologisch, chemisch usw. sein können.

Wir wollen in der Schaltungstechnik elektrische Netzwerke mit konzentrierten, zeitkonstanten Elementen R, L, C und gesteuerten Quellen betrachten. Dies ist bei Frequenzen unterhalb des Mikrowellenbereiches für die meisten Netzwerke zumindest für Kleinsignalaussteuerung erfüllt. Wenn wir zwischen zwei Knoten (dem Eingang) eine Spannung mit der komplexen Amplitude <u>U</u>_e oder einen Strom <u>I</u>_e einprägen, können wir zwischen zwei anderen Knoten (dem Ausgang) eine Lastimpedanz <u>Z</u>_L anschließen und eine Spannung <u>U</u>_a bzw. einen Strom <u>I</u>_a messen:

Je nach Kombination von Eingangs- und Ausgangsgröße hat der Frequenzgang einen eigenen Namen und evtl. eine Benennung:

$$\underline{\underline{A}} = \frac{\underline{\underline{U}}_{a}}{\underline{\underline{U}}_{e}}$$
Spannungsverstärkung dimensionslos
z.B. Teilerverhältnis eines Spannungsteilers, Spannungsverstärkung ei-
nes Operationsverstärkers

$$\underline{\underline{B}} = \frac{\underline{\underline{I}}_{a}}{\underline{\underline{I}}_{e}}$$
Stromverstärkung dimensionslos
z.B. Stromverstärkung des Bipolartransistors

$$\underline{\underline{S}} = \frac{\underline{\underline{I}}_{a}}{\underline{\underline{U}}_{e}}$$
Transconductance (Übertragungsleitwert) Dimension: S

z.B. Steilheit des Bipolar- und Feldeffekttransistors

$$\underline{\mathbf{R}} = \frac{\underline{\mathbf{U}}_{a}}{\underline{\mathbf{I}}_{e}}$$
 Transimpedanz (Übertragungswiderstand) Dimension: Ω

z.B. Verstärkung eines Transimpedanz-Verstärkers

Da der Frequenzgang eine sehr wichtige Systemgröße ist, wollen wir uns in diesem Kapitel mit den allgemeinen Eigenschaften des Frequenzgangs \underline{H} beschäftigen und damit, wie die darin enthaltene Information genutzt werden kann.

Die Ausgangsamplitude (<u>U</u>_a bzw. <u>I</u>_a) kann mathematisch durch die Lösung eines linearen Gleichungssystems (Knoten- und Maschengleichungen) aus der Eingangsamplitude (<u>U</u>_e bzw. <u>I</u>_e) berechnet werden. Die Koeffizienten dieses Gleichungssystems haben die Form konst., R, j ω L, 1/j ω C, 1/R, 1/j ω L und j ω C. Wenn man z.B. den Eliminations-Algorithmus anwendet, bleibt zum Schluss ein Ausdruck von folgender Form übrig:

 $(\underline{U}_a \text{ bzw. } \underline{I}_a) \cdot \sum Produkt \text{ aus Koeffizienten} = (\underline{U}_e \text{ bzw. } \underline{I}_e) \cdot \sum Produkt \text{ aus Koeffizienten}$

Deshalb kann der Frequenzgang immer auf folgende Form gebracht werden:

$$\underline{H}(j\omega) = \frac{(\underline{U}_{a} \text{ bzw. } \underline{I}_{a})}{(\underline{U}_{e} \text{ bzw. } \underline{I}_{e})} = \frac{d_{z}(j\omega)^{z} + d_{z-1}(j\omega)^{z-1} + \dots + d_{1}(j\omega) + d_{0}}{c_{n}(j\omega)^{n} + c_{n-1}(j\omega)^{n-1} + \dots + c_{1}(j\omega) + c_{0}}$$

Der Frequenzgang ist also eine rationale Funktion der komplexen Variable j ω mit reellen Koeffizienten c_i, d_i und damit im allgemeinen eine komplexe Funktion (aber nicht notwendig: s. Beispiel Tiefpass 2. Ordnung mit R = 0).

Der Betrag |<u>H</u>| wird als Amplitudengang des Systems bezeichnet. Die Phase $\angle \underline{H}$ wird als Phasengang bzw. Übertragungswinkel des Systems bezeichnet. Zusammenfassung wichtiger Beziehungen:

$\underline{H} = \underline{H} e^{j \angle \underline{H}}$	Frequenzgang
$\left \underline{H}\right = \sqrt{\underline{H} \cdot \underline{H}^{*}} = \sqrt{\left[\text{Re}(\underline{H})\right]^{2} + \left[\text{Im}(\underline{H})\right]^{2}}$	Amplitudengang
$\angle \underline{H} = \arctan \frac{\text{Im}(\underline{H})}{\text{Re}(\underline{H})}$	Phasengang, Übertragungswinkel
$\tau_{p} = -\frac{\angle \underline{H}}{\omega}$	Phasenlaufzeit durch das System
$\tau_g = -\frac{d\angle \underline{H}}{d\omega}$	Gruppenlaufzeit durch das System
Grenzfrequenz f _g :	Frequenz, bei der $ \underline{H} _{dB}$ um 3dB gegenüber dem Wert bei f = 0 abgesunken ist
Transitfrequenz f _T :	Frequenz, bei der $ H = 1$ bzw. $ H _{dB} = 0$ dB erreicht wird

Keine Verzerrungen im Zeitbereich, wenn alle Frequenzkomponenten gleiche Phasen- und Gruppenlaufzeit besitzen $\Rightarrow \tau_g = \tau_p = konst. \Rightarrow \angle \underline{H} = konst. \cdot \omega$, d.h. das System verursacht nur eine Zeitverzögerung.

Aus der Mathematik ist bekannt, dass sich Polynome mit reellen Koeffizienten als Produkt aus linearen und quadratischen Faktoren darstellen lassen. Ein Linearfaktor ergibt sich für jede einfache Nullstelle des Polynoms, ein quadratischer Faktor ergibt sich für jedes konjugiert-komplexe Nullstellenpaar des Polynoms.

Damit kann man den Frequenzgang auf folgende faktorisierte Form bringen:

$$\underline{H} = V_0 \cdot \left(\frac{j\omega}{\omega_0}\right)^m \cdot \frac{\prod_i \underline{Z}_i(j\omega)}{\prod_k \underline{N}_k(j\omega)}$$

Die Faktoren $\underline{Z}_i(j\omega)$ und $\underline{N}_k(j\omega)$ haben folgende normierte Form:

linearer Faktor:
$$1 + \frac{j\omega}{\omega_{p_i}}$$
 oder quadratischer Faktor: $1 + \frac{1}{q_i} \frac{j\omega}{\omega_{p_i}} + \left(\frac{j\omega}{\omega_{p_i}}\right)^2$

ω_{pi} Polfrequenz, Kennfrequenz oder Eckfrequenz
 ω_{pi} wird formal negativ, wenn das Vorzeichen vor dem linearen Glied negativ ist (nur im Zähler möglich, da das System sonst instabil ist)

qi Polgüte
 qi wird immer als positiv angenommen, da ein evtl. negatives Vorzeichen des linearen Gliedes bereits durch ein negatives ω_{pi} ausgedrückt wird
 qi>0.5, da sonst der quadratische Faktor in zwei lineare Faktoren zerfällt

$$D_i$$
 Dämpfungsfaktor $D_i = \frac{1}{2 \cdot q_i} \implies q_i = \frac{1}{2 \cdot D_i}$

Der Faktor $\left(\frac{j\omega}{\omega_0}\right)^m$ enthält die Nullstellen j ω = 0 des Zählers und Nenners nach dem

Kürzen. Die Normierungsfrequenz ω_0 ist keine Kennfrequenz. Sie kann beliebig gewählt werden, z.B. 1Hz.

Die reelle Konstante V₀ ergibt sich aus den Divisionen, die notwendig sind, um alle Faktoren auf ihre Normalform zu bringen (Die Wahl von ω_0 beeinflusst V₀).

Diese Faktorisierung ist im Prinzip immer möglich, allerdings muss man für ihre praktische Durchführung die Polynomnullstellen berechnen und daraus die Polfrequenzen und Polgüten. Dies ist im allgemeinen nur numerisch möglich. Es gibt jedoch viele praktisch wichtige Fälle, bei denen sich die Faktorisierung von selbst ergibt, z.B. bei Kettenschaltungen von Systemen mit sehr niedrigem Ausgangswiderstand und/oder sehr hohem Eingangswiderstand. In diesem Fall muss nur noch die Normierung durchgeführt werden.

Beispiele:

Tiefpass

1. Ordnung:	
$U(i_{a}) = \underbrace{U}_{a}$	1
$\underline{\Pi}(\mathbf{J}\omega) = \frac{\mathbf{U}_{e}}{\mathbf{U}_{e}}$	

$$V_0 = 1, m = 0, \omega_{p1} = 1/RC$$

Hochpass 1. Ordnung:

$$\underline{H}(j\omega) = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{j\omega RC}{1 + j\omega RC}$$

$$V_0 = 1, m = 1, \omega_0 = 1/RC, \omega_{p1} = 1/RC$$

Bandpass 2. Ordnung:

$$\underline{H}(j\omega) = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{j\omega RC}{1 + j\omega RC + LC(j\omega)^{2}}$$

$$V_0 = 1, m = 1, \omega_0 = 1/RC, \omega_{p1} = \frac{1}{\sqrt{LC}}, q_1 = \frac{1}{R}\sqrt{\frac{L}{C}}$$

3.1.2 Bode-Diagramm

Häufig überstreicht der interessierende Frequenzbereich mehrere Größenordnungen (z.B. Audio: 20Hz - 20kHz). Der Amplitudengang variiert dabei oft ebenfalls über mehrere Größenordnungen. Deshalb definiert man den Logarithmus des Amplitudenganges als sog. Übertragungsmaß:

$$\underline{H}_{dB} = 20 \, \underline{Ig} \underline{H}$$

Bei dimensionsbehafteten Frequenzgängen muss vor der Betragsbildung durch eine Bezugsgröße (z.B. 1Ω bzw. 1S) dividiert werden.

Ein Bode-Diagramm ist die graphische Darstellung des Übertragungsmaßes und des Phasenganges über einer logarithmisch geteilten Frequenzachse.

Besonders einfach wird die Zeichnung des Bode-Diagrammes, wenn man von der faktorisierten Form in Betrags-Phase-Darstellung ausgeht:

$$\underline{H} = \left| V_0 \right| e^{j \angle V_0} \cdot \left| \frac{\omega}{\omega_0} \right|^m e^{jm \cdot 90^\circ} \cdot \frac{\prod_i |\underline{Z}_i(j\omega)| e^{j \angle \underline{Z}_i}}{\prod_k |\underline{N}_k(j\omega)| e^{j \angle \underline{N}_k}}$$

Damit erhält man für den Amplitudengang:
$$|\underline{H}| = \left| V_0 \right| \cdot \left| \frac{\omega}{\omega_0} \right|^m \cdot \frac{\prod_i |\underline{Z}_i(j\omega)|}{\prod_k |\underline{N}_k(j\omega)|}$$

Das Übertragungsmaß zerfällt damit in eine Summe:

$$\left|\underline{H}\right|_{dB} = 20 \, lg \left|\underline{H}\right| = 20 \, lg \left|V_0\right| + m \cdot 20 \, lg \left|\frac{\omega}{\omega_0}\right| + \sum_i 20 \, lg \left|\underline{Z}_i(j\omega)\right| - \sum_k 20 \, lg \left|\underline{N}_k(j\omega)\right|$$

 $\left|\underline{H}\right|_{dB} = \left|V_{0}\right|_{dB} + m \cdot \left|\frac{\omega}{\omega_{0}}\right|_{dB} + \sum_{i} \left|\underline{Z}_{i}(j\omega)\right|_{dB} - \sum_{k} \left|\underline{N}_{k}(j\omega)\right|_{dB}$ ("Zähler verstärkt, Nenner dämpft")

Auch der Phasengang ist als Summe darstellbar:

$$\angle \underline{H} = \angle V_0 + m \cdot 90^\circ + \sum_i \angle \underline{Z}_i - \sum_k \angle \underline{N}_k$$

Beachte: Winkel von V₀ nicht vergessen (0° bzw. 180°), Nenner bewirkt immer Phasennacheilung, Zähler kann Phasenvor- und nacheilung bewirken. Da das Bode-Diagramm des gesamten Frequenzganges sich aus der Addition der Bode-Diagramme der einzelnen Faktoren ergibt, genügt es, sich die Bode-Diagramme dieser Faktoren zu betrachten.

Beim linearen Faktor $1 + \frac{j\omega}{\omega_{p_i}}$ und beim quadratischen Faktor $1 + \frac{1}{q_i} \frac{j\omega}{\omega_{p_i}} + \left(\frac{j\omega}{\omega_{p_i}}\right)^2$ beschränkt man sich in der Praxis häufig auf den asymptotischen Verlauf für $\omega \ll \omega_{pi}$ und $\omega \gg \omega_{pi}$:

$$1 + \frac{j\omega}{\omega_{p_{i}}} \approx \begin{cases} 1 & \text{für } \omega << |\omega_{p_{i}}| \\ \frac{j\omega}{\omega_{p_{i}}} & \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \qquad 1 + \frac{1}{q_{i}} \frac{j\omega}{\omega_{p_{i}}} + \left(\frac{j\omega}{\omega_{p_{i}}}\right)^{2} \approx \begin{cases} 1 & \text{für } \omega << |\omega_{p_{i}}| \\ \left(\frac{j\omega}{\omega_{p_{i}}}\right)^{2} & \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \\ |\underline{H}|_{dB} \approx \begin{cases} 0 dB & \text{für } \omega << |\omega_{p_{i}}| \\ 20 \lg \frac{\omega}{\omega_{p_{i}}} & \text{für } \omega >> |\omega_{p_{i}}| \\ \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \qquad |\underline{H}|_{dB} \approx \begin{cases} 0 dB & \text{für } \omega << |\omega_{p_{i}}| \\ 40 \lg \frac{\omega}{\omega_{p_{i}}} & \text{für } \omega >> |\omega_{p_{i}}| \\ \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \\ \angle\underline{H} \approx \begin{cases} 0^{\circ} & \text{für } \omega << |\omega_{p_{i}}| \\ 90^{\circ} \cdot \text{sgn}(\omega_{p_{i}}) & \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \qquad \angle\underline{H} \approx \begin{cases} 0^{\circ} & \text{für } \omega << |\omega_{p_{i}}| \\ 180^{\circ} \cdot \text{sgn}(\omega_{p_{i}}) & \text{für } \omega >> |\omega_{p_{i}}| \end{cases} \end{cases}$$

TW 28.06.04 ST_3

Exakter Verlauf für quadratischen Faktor im Nenner ($\omega_{pi} = 1Hz$, $q_i = variabel$):

3-7
Zeichnen des asymptotischen Amplituden- und Phasenganges

In der asymptotischen Näherung bestehen alle Bode-Diagramme dieser Faktoren aus Geradenstücken. Da die Addition von Geradenstücken wieder Geradenstücke ergibt, muss die Überlagerung zum Gesamtdiagramm nicht punktweise ausgeführt werden, sondern kann nach folgendem "Kochrezept" durchgeführt werden:

- Übertragungsfunktion auf normierte Form bringen
- Beträge der Eckfrequenzen durch senkrechte Striche markieren (ω_o ist keine Eckfrequenz!)
- Links von kleinster Eckfrequenz bei ω_{Start} Amplitude berechnen und einzeichnen:

$$\left|\underline{H}\right|_{dB}^{Start} = 20 \log |V_0| + m \cdot 20 \log \left|\frac{\omega_{Start}}{\omega_0}\right|$$

- Bis zur ersten Eckfrequenz eine Gerade mit Steigung m·20dB/Dekade zeichnen.
- Nach jeder Eckfrequenz ändert sich die Steigung um +/-20dB/Dekade (Linearfaktor im Zähler/Nenner) oder +/-40dB/Dekade (quadratischer Faktor im Zähler/Nenner). Bei zusammenfallenden Eckfrequenzen addieren sich die Steigungsänderungen.
- Links von kleinster Eckfrequenz bei ω_{Start} die Phase berechnen und einzeichnen:

$$\angle \underline{H}^{\text{Start}} = \angle V_0 + m \cdot 90^\circ$$

- Waagrechte Gerade bis zur ersten Eckfrequenz zeichnen
- Bei jeder Eckfrequenz springt die Phase um +/-90° (Linearfaktor mit positiver Eckfrequenz im Zähler/Linearfaktor im Nenner und Linearfaktor mit negativer Eckfrequenz im Zähler) oder +/-180° (quadratischer Faktor mit positiver Eckfrequenz im Zähler/Quadratischer Faktor im Nenner und quadratischer Faktor mit negativer Eckfrequenz im Zähler).
- Zwischen den Eckfrequenzen verläuft die Phase waagrecht.

Simulation des Bode-Diagramms mit PSpice

Schaltplan eingeben mit ABM-Bauteil LAPLACE aus Bibliothek abm.slb und Quelle VAC aus source.slb:

Den Attributen NOM und DENOM von LAPLACE wir das Zähler- bzw. Nennerpolynom zugewiesen (s = $j\omega$).

Mit Analysis/Setup und Analysis/Simulate AC-Sweep über den interessierenden Frequenzbereich durchführen, im Beispiel von f = $0.1/(2\pi)$ bis f = $100/(2\pi)$.

In Probe x-Achsenvariable mit Plot/X-Axis-Settings von FREQUENCY auf 2*PI*FREQUENCY ändern

Mit Trace/Add Kurve dB(V(a)) darstellen, mit Plot/Add Plot zweites Diagramm erzeugen und mit Trace/Add Kurve P(V(a)) darstellen.

3.1.3 Übertragungsfunktion

Neben dem Frequenzgang eines Systems interessiert häufig auch seine Reaktion auf eine nichtsinusförmige Anregung im Zeitbereich. Bei einer Anregung mit einem Diracstoß bezeichnet man die Reaktion als Stoßantwort bei einer Anregung mit einem Einheitssprung als Sprungantwort. Die Reaktion eines Systems auf eine Anregung im Zeitbereich wird am einfachsten mit der sog. Übertragungsfunktion berechnet. Die Übertragungsfunktion ergibt sich aus dem Frequenzgang, indem man formal j ω durch die komplexe Variable p ersetzt.

Bei energielosem Anfangszustand des Systems ergibt sich die Laplace-Transformierte der Reaktion zu $H(p) \cdot L(u_{\alpha}(t))$.

Da die Laplace-Transformierte des Diracstoßes 1 ist, ist die Übertragungsfunktion die Laplace-Transformierte der Stoßantwort h(t):

$$L(h(t)) = H(p)$$

Die Laplace-Transformierte des Einheitssprunges ist 1/p, so dass für die Laplace-Transformierte der Sprungantwort g(t) folgt:

$$L(g(t)) = H(p)/p$$

Die Laplace-Rücktransformation kann mit einer Partialbruchzerlegung oder mit dem Heavisideschen Entwicklungssatz ausgeführt werden. In beiden Fällen sind die Pole der Übertragungsfunktion von entscheidender Bedeutung.

Die Pole der Übertragungsfunktion sind die Nullstellen des Nenners. In der faktorisierten Form liefert jeder lineare Faktor im Nenner eine reelle Nullstelle, d.h. einen reellen Pol und jeder quadratische Faktor eine konjugiert komplexe Nullstelle, d.h. einen konjugiert komplexen Pol:

linearer Faktor:
$$1 + \frac{p}{\omega_{p_1}} = 0 \qquad \Rightarrow \qquad p_1 = -\omega_{p_1} \qquad |p_1| = \omega_{p_1}$$

quadr. Faktor: $1 + \frac{1}{q_2} \frac{p}{\omega_{p_2}} + \left(\frac{p}{\omega_{p_2}}\right)^2 = 0 \qquad \Rightarrow \qquad p_{2/3} = -\omega_{p_2} \cdot \left(\frac{1}{2q_2} \pm j\sqrt{1 - \frac{1}{4q_2}^2}\right)$
 $|p_{2/3}| = \omega_{p_2}$

Lage der Pole in der komplexen p-Ebene (Pol-Nullstellen-Plan):

Beitrag eines Pols zur Stoßantwort nach dem Heavisideschen Entwicklungssatz:

einfacher reeller Pol konjugie

$$h(t) \propto e^{-\frac{\omega_{p_i} t}{2q_i}} \cdot sin\left(\sqrt{1 - \frac{1}{4{q_i}^2}} \cdot \omega_{p_i} t\right)$$

Die Sprungantwort kann mit dem Integrationssatz aus der Stoßantwort berechnet werden:

$$g(t) = \int_{0}^{t} h(\tau) d\tau$$

Beitrag eines Pols zur Sprungantwort nach dem Heavisideschen Entwicklungssatz:

einfacher reeller Pol

1s V(a) konjugiert komplexer Pol

Bei einem stabilen System müssen alle Pole in der linken Halbebene liegen, d.h. alle Polfrequenzen im Nenner müssen positiv sein.

0s 1s 2 ∘ V(e)@1 ∘ ⊤ ⊥ ∘ + V(a)

Das Einschwingen verläuft bei einem konjugiert komplexen Pol um so ungedämpfter je näher der Pol an der imaginären Achse liegt, d.h. je größer die Polgüte ist. Eine große Polgüte führt also zu Überschwingen im Frequenz- <u>und</u> Zeitbereich.

Die Frequenz $\omega_{e_i} = \sqrt{1 - \frac{1}{4q_i^2} \cdot \omega_{p_i}}$, mit der das System einschwingt, heisst Eigenfre-

quenz oder charakteristische Frequenz.

Nennernullstellen bestimmen das Frequenz- <u>und</u> Zeitverhalten, Zählernullstellen sind dagegen nur für das Frequenzverhalten von Bedeutung.

konjugiert komplexer Pol

3.2 Kenngrößen eines Operationsverstärkers

$U_D = U_P - U_N$				
$U_{CM} = (U_{P} + U_{N})/2$				
$U_{\rm D}$ $U_{\rm D}$ $U_{\rm N}$ $U_{\rm N}$ $U_{\rm N}$		A _o . <u>U</u> _{Di} A _{CM} . <u>U</u> _{CM}) U _{b+} ↓ U _b -
Kenngröße	Definition	typ. Wert bei BJT-Eingang	typ. Wert bei FET-Eingang	idealer Wert
Leerlauf-Differenz- verstärkung bei f = 0	$A(0) = \frac{\Delta U_a}{\Delta U_D}\Big _{f \to 0}$	10^410^5 = 80100dB		x
Transitfrequenz	$\left \underline{A}_{o}(f_{T})\right = 1$	1MHz1GHz		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Frequenzgang	$\underline{\mathbf{A}}_{o} = \frac{\underline{\mathbf{U}}_{a}}{\underline{\mathbf{U}}_{D}}$	$\underline{A}_{o} = \frac{A(f)}{1 + j \cdot f \cdot f}$	$\frac{D}{A(0)/f_{T}} \approx -j\frac{f_{T}}{f}$	×
Slew-rate	$\mathbf{s}_{r} = \frac{\Delta U_{a}}{\Delta t} \bigg _{\frac{\Delta U_{e}}{\Delta t} \to \infty}$	11000V/µs		x
Maximaler Ausgangsstrom		10100mA		×
Ausgangsaussteuerbarkeit		$-U_{b-} + \Delta U_{a-} < U_a < U_{b+} - \Delta U_{a+}$		∞
Eingangsaussteuerbarkeit		$-U_{b-}+\Delta U_{CM-} < U_{CM} < U_{b+}-\Delta U_{CM+}$		∞
Differenzeingangs- widerstand	$\left \mathbf{r}_{D} = \frac{\Delta U_{P}}{\Delta I_{P}} \right _{U_{N}=0}$	1MΩ	10 ¹² Ω	×
Gleichtakteingangs- widerstand	$\left \mathbf{r}_{CM} = \frac{\Delta \mathbf{U}_{P}}{\Delta \mathbf{I}_{P}} \right _{\mathbf{U}_{P} = \mathbf{U}_{N}}$	1GΩ	$10^{14} \Omega$	œ
Ausgangswider- stand	$\left \mathbf{r}_{a} = \frac{\Delta U_{a}}{\Delta I_{a}} \right _{\Delta U_{D} = 0}$	50Ω1kΩ		0
Gleichtaktunter- drückung	$CMRR = \frac{\overline{A(0)}}{A_{CM}}\Big _{f \to 0}$	10^410^5 = 80100dB		×
Eingangsruhestrom	$\left \mathbf{I}_{B} = \mathbf{I}_{P} \right _{U_{P} = U_{N} = 0}$	1nA1μA	1pA10pA	0
Offsetspannung	$U_a = 0$ bei $U_D = U_{OS}$	10µV1mV	100µV10mV	0

Bezugspotential aller Spannungen ist der Zusammenschaltungspunkt der beiden Betriebsspannungsversorgungen. Der OPV hat i.a. keinen Masseanschluss. Die Versorgungsspannungen werden im Folgenden immer weggelassen.

Statt der skizzierten bipolaren Spannungsversorgung wird heute oft eine unipolare Spannungsversorgung verwendet, bei der die negative Betriebsspannung 0V beträgt, d. h. der negative Spannungsversorgungsanschluss des OPV wird direkt mit Masse verbunden. Sog. Single-Supply-Operationsverstärker, die für diesen Betrieb geeignet sind, haben in der Regel eine Ausgangsaussteuerbarkeit, die bis auf wenige mV an U_{a-} heranreicht, d.h. $\Delta U_{a-}\approx 0$. Idealerweise besitzen sie auch eine Eingangsaussteuerbarkeit, die U_{a-} umfasst, d.h. $\Delta U_{CM-} \approx 0$. Dies ist jedoch nicht immer der Fall.

Sogenannte Rail-to-Rail-OPV erreichen am Ausgang auch die positive Versorgungsspannung bis auf wenige mV, d.h. $\Delta U_{a-} \approx 0$ und $\Delta U_{a+} \approx 0$. Idealerweise besitzen Railto-Rail-OPV auch eine Eingangsaussteuerbarkeit, die die positive Versorgungsspannung umfasst, d.h. $\Delta U_{CM-} \approx 0$ und $\Delta U_{CM+} \approx 0$. Auch dies ist nicht immer der Fall.

Die beiden Eingangsspannungen dürfen im allgemeinen die Betriebsspannungen nur um max. 0.3V über- bzw. unterschreiten.

Der Ausgang ist im allgemeinen kurzschlussfest, wenn dabei die maximale Verlustleistung pro Gehäuse nicht überschritten wird.

OPVs werden häufig in Varianten als Einzelverstärker (1 OPV in einem 8-poligen Gehäuse), als Dual-OPV (2 OPV in einem 8-poligen Gehäuse) und als Quad-OPV (4 OPV in einem 14-poligen Gehäuse) angeboten. Jede Variante ist im allgemeinen pinkompatibel zur gleichen Variante eines anderen Typs.

3.3 Gegenkopplung

3.3.1 Prinzip

Häufig ist die Verstärkung eines Verstärkers nicht linear oder stabil genug, um die Anforderungen zu erfüllen. Wenn die Verstärkung wesentlich größer ist (mind. Faktor 10) als eigentlich benötigt, kann die Verstärkung durch Gegenkopplung auf Kosten ihrer Größe linearisiert und stabilisiert werden. Das Gegenkopplungsprinzip wird in der Schaltungstechnik sehr ausgiebig angewendet. Wir wollen die Gegenkopplung an einem Spannungsverstärker studieren, der in der Praxis am häufigsten vorkommt und bei dem das Prinzip am anschaulichsten ist. Die Gegenkopplung funktioniert aber ebenso beim Transconductance-, beim Transimpedanz- und beim Stromverstärker. Diese Verallgemeinerung wollen wir im Anschluss daran durchführen. Wir betrachten einen Verstärker mit Verstärkung \underline{A}_0 , bei dem ein Bruchteil \underline{k} der Aus-

gangsspannung \underline{U}_a so auf den Eingang zurückgekoppelt wird, dass sie der Eingangsspannung \underline{U}_e entgegenwirkt:

Damit ergibt sich eine effektive Spannung $\underline{U}_D = \underline{U}_e - \underline{k} \cdot \underline{U}_a$ am Verstärkereingang. Was das Ganze bringt, sehen wir, wenn wir die effektive Spannung \underline{U}_D mit \underline{A}_o multiplizieren und die gegengekoppelte Verstärkung $\underline{U}_a/\underline{U}_e$ berechnen:

$$\underline{U}_{a} = \underline{A}_{O} \cdot \left(\underline{U}_{e} - \underline{k} \cdot \underline{U}_{a}\right) \qquad \Longrightarrow \qquad \underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{A}_{O}}{1 + \underline{k} \cdot \underline{A}_{O}} = \frac{1}{\underline{k}} \cdot \frac{\underline{k} \cdot \underline{A}_{O}}{1 + \underline{k} \cdot \underline{A}_{O}}$$

Das Produkt $\underline{k} \cdot \underline{A}_0 = \underline{g}$ heisst Schleifenverstärkung, weil es die Verstärkung ist, die ein Signal erfährt, das einmal die an irgendeiner Stelle aufgetrennte Rückkopplungsschleife durchläuft. Der entscheidende Punkt ist nun, dass die Verstärkung \underline{A}_k des gegengekoppelten Verstärkers unabhängig von \underline{A}_0 wird, wenn der Betrag der Schleifenverstärkung $|\underline{g}| = |\underline{k} \cdot \underline{A}_0| >> 1$ wird (in der Praxis gilt $|\underline{g}| > 10$ als untere Grenze):

$$|\underline{g}| = |\underline{k} \cdot \underline{A}_{O}| >> 1 \qquad \Rightarrow \qquad \underline{A}_{k} \approx \frac{1}{\underline{k}}$$

Die gegengekoppelte Verstärkung \underline{A}_k wird in diesem Fall ausschließlich durch den Rückkopplungsfaktor bestimmt. Dies ist ein entscheidender Vorteil, da \underline{k} sehr linear und stabil gemacht werden kann, wenn nur passive Elemente im Rückkopplungsnetz verwendet werden (z.B. ein ohmscher Spannungsteiler).

.

.

Solange also die Verstärkung groß genug ist, kann sie nichtlinear und instabil sein, ohne dass sich dies auf die gegengekoppelte Verstärkung auswirkt.

Wenn man als Rückkopplungsnetz ein komplexes Netzwerk verwendet, kann man mit dieser Methode komplexe Frequenzgänge realisieren, z.B. Integrierer und Differenzierer. Wenn man nichtlineare Rückkopplungsnetzwerke verwendet, kann man nichtlineare Funktionen realisieren, z.B. Logarithmierer.

Die relative Genauigkeit der gegengekoppelten Verstärkung ist umso besser, je höher die Schleifenverstärkung ist:

$$\frac{\left|\frac{\underline{k}}{\underline{k}} - \frac{\underline{1}}{\underline{k}} \cdot \frac{\underline{k} \cdot \underline{A}_{O}}{1 + \underline{k} \cdot \underline{A}_{O}}\right|}{\frac{1}{\underline{k}}} = \left|1 - \frac{\underline{k} \cdot \underline{A}_{O}}{1 + \underline{k} \cdot \underline{A}_{O}}\right| = \left|\frac{1}{1 + \underline{k} \cdot \underline{A}_{O}}\right| = \left|\frac{1}{1 + \underline{g}}\right| \approx \frac{1}{|\underline{g}|}$$

3.3.2 Kleinsignal-Bandbreite f_{ak}

Die Gegenkopplung hat natürlich auch Auswirkung auf die Bandbreite des rückgekoppelten Verstärkers. Bei jedem Verstärker nimmt die Verstärkung bei hohen Frequenzen ab, weil interne und externe Kapazitäten wirksam werden und Tiefpässe bilden. Der Frequenzgang eines universell kompensierten OPVs hat bis zur Transitfrequenz f_T den Verlauf eines Tiefpasses 1. Ordnung (uA741: $A(0) \approx 10^5$, f_a ≈ 10 Hz):

Da bei einem gegengekoppelten Verstärker die Größe der nichtgegengekoppelten Verstärkung keine Rolle spielt, solange sie nur groß genug ist, ist der genaue Wert A(0) bei f = 0 und die genaue Lage von f_a in der Praxis uninteressant. Wichtig wird der Wert der Verstärkung erst bei Frequenzen, bei denen sie so weit abgenommen hat, dass die Schleifenverstärkung bei rückgekoppelten Schaltungen in die Größenordnung von 1 kommt.

Man charakterisiert deshalb den Frequenzgang der Verstärkung nicht durch A(0) und f_g , sondern durch die Transitfrequenz f_T . Die Transitfrequenz ist die Frequenz, bei der der Betrag der nichtgegengekoppelten Verstärkung 1 wird.

Wegen des 20dB/Dekade-Abfalls besteht folgender einfacher Zusammenhang zwischen der Transitfrequenz, A(0) und f_a :

$$f_T = A(0) \cdot f_a$$

Beim uA741 beträgt die Transitfrequenz ca. 1MHz.

Im eigentlich interessanten Bereich $f >> f_g$ ist der Betrag der Leerlauf-Verstärkung nach der Skizze mit sehr hoher Genauigkeit gleich f_T/f und die Phase gleich -90°. Damit kann der Frequenzgang eines universell kompensierten OPVs durch folgende

einfache Form beschrieben werden: $\underline{A}_{O} \approx -j \frac{f_{T}}{f}$.

Diese Formel ist natürlich für f<fg falsch, da sie dort eine zu große Verstärkung und eine zu große Phasenverschiebung liefert. Bei diesen Frequenzen ist die Verstärkung aber so groß, dass sie sich sowieso nicht auf die gegengekoppelte Verstärkung auswirkt, so dass der Fehler keine Rolle spielt.

Wenn wir die gegengekoppelte Verstärkung <u>A</u>_k in das Bode-Diagramm eintragen, ergibt sich für reelles k (häufigster Fall des ohmschen Spannungsteilers) solange eine waagrechte Gerade $|\underline{A}_k| \approx 1/k$, solange die Schleifenverstärkung >>1 ist.

Die Schleifenverstärkung kann direkt aus dem Bode-Diagramm abgelesen werden:

$$\left|\underline{\mathbf{g}}\right|_{\mathsf{dB}} = \left|\mathbf{k} \cdot \underline{\mathbf{A}}_{\mathsf{O}}\right|_{\mathsf{dB}} = \left|\underline{\underline{\mathbf{A}}}_{\mathsf{O}}\right|_{\mathsf{dB}} = \left|\underline{\underline{\mathbf{A}}}_{\mathsf{O}}\right|_{\mathsf{dB}} - \left|\frac{1}{\mathbf{k}}\right|_{\mathsf{dB}}$$

Die Schleifenverstärkung in dB ist also die Differenz zwischen dem Amplitudengang $|\underline{A}_{O}|_{dB}$ des OPV und der Geraden $|1/k|_{dB}$. Bei der Frequenz f_{gk}, bei der sich die beiden Kurven schneiden, ist der Betrag der Schleifenverstärkung 1. Bei dieser Frequenz ist die gegengekoppelte Verstärkung um 3dB gegenüber dem Wert 1/k abgesunken. f_{gk} ist deshalb die gegengekoppelte Grenzfrequenz und damit die Kleinsignal-Bandbreite des rückgekoppelten Verstärkers.

Oberhalb von f_{gk} ist der Betrag der Schleifenverstärkung $|\underline{g}| << 1$, so dass gilt:

$$|\underline{g}| \ll 1 \qquad \Rightarrow \underline{A}_k \approx \underline{A}_O$$

Oberhalb von f_{gk} ist die gegengekoppelte Verstärkung also praktisch gleich der Verstärkung des OPV.

Auf dem 20dB/Dekade-Abfall ist das Produkt aus Verstärkung und Bandbreite immer konstant, weil eine Zunahme der Frequenz um einen Faktor 10 mit einer Abnahme der Verstärkung um einen Faktor 10 verbunden ist:

$$\left|\frac{1}{k}\right| \cdot f_{gk} = 1 \cdot f_{T}$$

Die Transitfrequenz gibt also direkt die Größe des sog. Verstärkungs-Bandbreite-Produktes an.

Die gegengekoppelte Grenzfrequenz ist um soviel niedriger als die Transitfrequenz, wie die gegengekoppelte Verstärkung 1/k größer als 1 ist:

$$\mathbf{f}_{gk} = \frac{\mathbf{f}_{T}}{\left|\mathbf{1}/\mathbf{k}\right|} = \left|\mathbf{k}\right| \cdot \mathbf{f}_{T}$$

Man kann also durch Gegenkopplung Verstärkung gegen Bandbreite eintauschen.

Man kann die Kleinsignal-Grenzfrequenz f_{gk} auch formal ableiten, indem man den genäherten Frequenzgang $\underline{A}_{O} = -j \frac{f_{T}}{f}$ des OPV in die Formel für die gegengekoppelte Verstärkung einsetzt:

$$\underline{\mathbf{A}}_{k} = \frac{\underline{\mathbf{A}}_{O}}{1 + k \cdot \underline{\mathbf{A}}_{O}} \approx \frac{-j\frac{\mathbf{f}_{T}}{\mathbf{f}}}{1 - j\frac{\mathbf{f}_{T}}{\mathbf{f}}\mathbf{k}} = \frac{\frac{1}{k}}{1 + j\frac{\mathbf{f}}{\mathbf{k} \cdot \mathbf{f}_{T}}} = \frac{\frac{1}{k}}{1 + j\frac{\mathbf{f}}{\mathbf{f}_{ok}}}$$

Dies ist die Übertragungsfunktion eines Tiefpasses mit der Grenzfrequenz $f_{gk} = k \cdot f_T$. Man erkennt daran auch, dass die Phase der gegengekoppelten Verstärkung unterhalb von f_{gk} 0 ist, bei f_{gk} -45° beträgt und dann auf -90° abnimmt (gestrichelte Kurve im Bode-Diagramm). Beachten Sie, dass die "interne" Phasenverschiebung der nichtgegengekoppelten Verstärkung <u>A</u>₀ bereits bei der sehr viel niedrigeren Frequenz f_g auf -90° abnimmt (durchgezogene Kurve im Bode-Diagramm).

3.3.3 Anstiegsgeschwindigkeit (Slewrate)

Bei mehrstufigen gegengekoppelten Verstärkern tritt häufig der Effekt auf, dass sich die Ausgangsspannung bei großen Eingangssprüngen nur mit einer bestimmten maximalen Steigung, der sog. Slewrate verändern kann.

Bei einem nicht-rückgekoppelten Verstärker, dessen Ausgangsspannung möglichst schnell auf einen Wert U_{a0} ansteigen soll, muss die Eingangsspannung auf einen Wert $U_{a0}/A(0)$ springen. Die Ausgangsspannung steigt in diesem Fall exponentiell mit der Zeitkonstante $1/(2\pi f_g)$ auf den Endwert U_{a0} an. Zu einer Übersteuerung des Verstärkers kann es dabei nicht kommen solange U_{a0} nicht ausserhalb der Aussteuerungsgrenzen liegt.

Bei einem rückgekoppelten Verstärker, dessen Ausgangsspannung möglichst schnell auf einen Wert U_{a0} ansteigen soll, muss die Eingangsspannung auf einen Wert U_{a0}/|1/k| springen. Die Ausgangsspannung sollte in diesem Fall exponentiell mit der Zeitkonstante 1/($2\pi f_{gk}$) auf den Endwert U_{a0} ansteigen. Es kann nun aber passieren, dass die volle Sprunghöhe der Eingangsspannung die Eingangsstufe in die Übersteuerung bringt, da im ersten Moment die Ausgangsspannung noch 0 ist und somit nichts zurückgekoppelt wird. Dies ist an sich kein Problem, weil nach einer gewissen Zeit die Gegenkopplung aufgrund der ansteigenden Ausgangsspannung wirksam wird und die Eingangsspannung in jedem Fall soweit reduziert, dass die Eingangsstufe wieder aus der Übersteuerung herauskommt und sich die gewünschte Ausgangsspannung U_{a0} einstellt. Solange aber die Eingangsstufe übersteuert ist, steigt die Ausgangsspannung der Endstufe langsamer an als oben aus dem Verhalten einer linearen Schaltung abgeleitet wurde.

Bei den meisten OPVs liefert die erste Stufe an ihrem Ausgang im übersteuerten Zustand einen bestimmten maximalen Strom I_{max} , der die Eingangskapazität C der nächsten Stufe mit einer linear ansteigenden bzw. abfallenden Spannungsrampe I_{max} /C lädt bzw. entlädt. Damit ergibt sich auch am Ausgang des gegengekoppelten Verstärkers eine linear ansteigende bzw. abfallende Spannung, solange die Übersteuerung der ersten Stufe anhält. Die Steigung der Ausgangsspannung in diesem Zustand ist die maximal mögliche Änderungsgeschwindigkeit der Ausgangsspannung und wird als Slewrate s_r bezeichnet.

Bei den meisten universell kompensierten OPVs wird die Kapazität der zweiten Stufe durch eine zwischen Ein- und Ausgang der zweiten Stufe angeschlossene Kompensations-Kapazität C_k bestimmt. Beim gleichen Strom I_{max} der ersten Stufe kann die Kapazität C_k bei FET- und MOSFET-Eingangsstufen wesentlich kleiner dimensioniert werden. Deshalb haben OPVs mit FET- und MOSFET-Eingangsstufen bei ähnlicher Transitfrequenz eine wesentlich höhere Slewrate als OPVs mit Bipolar-Eingangsstufen.

Wegen der begrenzten slew-rate gibt es neben der Kleinsignal-Grenzfrequenz f_{gk} noch eine Großsignal-Grenzfrequenz f_{sr} , oberhalb der nichtlineare Verzerrungen des Ausgangssignals auftreten. Die maximale Anstiegsgeschwindigkeit wird im Nulldurchgang eines sinusförmigen Ausgangssignals erreicht und hat einen Wert von $2\pi f \cdot \hat{u}_a$. Wenn der Sinus unverzerrt bleiben soll, muss dieser Wert kleiner als die Slewrate bleiben. Aus dieser Bedingung ergibt sich die Großsignal-Grenzfrequenz:

$$f_{sr} = \frac{s_r}{2\pi \hat{u}_a}$$

Aus der Bedingung $f_{gk} < f_{sr}$ kann eine Grenze für die Eingangsamplitude abgeleitet werden, unterhalb der die Bandbreite des rückgekoppelten Verstärkers durch die Transitfrequenz linear begrenzt wird und oberhalb der die Bandbreite durch die Slewrate nichtlinear begrenzt wird:

$$\hat{u}_{e} < \frac{s_{r}}{2\pi \cdot f_{T}}$$

3.3.4 Verallgemeinertes Gegenkopplungsmodell

Bisher sind wir davon ausgegangen, dass bei der Gegenkopplung ein Bruchteil der Ausgangsspannung von der Eingangsspannung subtrahiert wird. Dies ist jedoch nur eine von vier möglichen Gegenkopplungsmethoden. Das verallgemeinerte Gegenkopplungsmodell hat im Signalflussdiagramm folgende Form:

- <u>X</u>_e Eingangssignal
- <u>X</u>_D Effektives Eingangssignal des Verstärkers
- \underline{X}_a Ausgangssignal
- H Frequenzgang des Verstärkers
- k Frequenzgang des Rückkopplungsnetzwerkes

Frequenzgang <u>H</u>_k des gegengekoppelten Verstärkers:

$$\begin{split} \underline{X}_{D} &= \underline{X}_{e} - \underline{k} \cdot \underline{X}_{a} \qquad \underline{X}_{a} = \underline{H} \cdot \underline{X}_{D} \\ & \Rightarrow \quad \underline{X}_{a} = \underline{H} \cdot \underline{X}_{e} - \underline{k} \cdot \underline{H} \cdot \underline{X}_{a} \qquad \Rightarrow \qquad \boxed{\underline{H}_{k} = \frac{\underline{X}_{a}}{\underline{X}_{e}} = \frac{\underline{H}}{1 + \underline{k} \cdot \underline{H}} = \frac{1}{\underline{k}} \cdot \frac{\underline{k} \cdot \underline{H}}{1 + \underline{k} \cdot \underline{H}} = \frac{1}{\underline{k}} \cdot \frac{1}{1 + \underline{g}^{-1}} \\ \\ Schleifenverstärkung: \qquad \underline{g} = \underline{k} \cdot \underline{H} \qquad \qquad \boxed{\underline{H}_{k} \approx \frac{1}{\underline{k}}} \quad \text{für } \underline{\underline{g}} >> 1 \end{split}$$

Wenn der Betrag der Schleifenverstärkung genügend groß ist, hängt der Frequenzgang des gegengekoppelten Verstärkers nur noch vom Rückkopplungsnetzwerk ab und wird damit stabilisiert. Mit jeder der vier Rückkopplungsmethoden kann somit eine Verstärkereigenschaft stabilisiert werden.

Bedeutung der Größen bei den vier Gegenkopplungsmethoden:

Gegenkopplungs- methode	<u>X</u> e	<u>X</u> a	H	Anwendung
Serienspannungs- gegenkopplung	<u>U</u> e	<u>U</u> a	Spannungsver- stärkung <u>A</u>	Spannungsverstärker VV-OPV ("normaler" OPV)
Serienstromgegen- kopplung	<u>U</u> e	<u>l</u> a	Übertragungs- leitwert <u>S</u>	Spannungs-Strom-Wandler VC-OPV
Parallelspannungs- gegenkopplung	<u>l</u> e	<u>U</u> a	Übertragungs- widerstand <u>R</u>	Strom-Spannungs-Wandler CV-OPV (Transimpedanz-OPV)
Parallelstromge- genkopplung	<u>l</u> e	<u>l</u> a	Stromverstärkung <u>B</u>	Stromverstärker CC-OPV

3.4 Frequenzgangkorrektur

3.4.1 Stabilität

Wie wir an dem verallgemeinerten Gegenkopplungsmodell gesehen haben, hat die Übertragungsfunktion eines gegengekoppelten OPV's folgende allgemeine Form:

$$\underline{\mathbf{H}}_{\mathbf{k}} = \frac{\underline{\mathbf{X}}_{\mathbf{a}}}{\underline{\mathbf{X}}_{\mathbf{e}}} = \frac{\underline{\mathbf{H}}}{\mathbf{1} + \underline{\mathbf{k}} \cdot \underline{\mathbf{H}}}$$

Wenn der Nenner dieses Ausdruckes sehr klein wird, wächst die Ausgangsgröße über alle Grenzen, d.h. die Schaltung wird instabil. Dies wird bei Oszillatoren gezielt zur Schwingungserzeugung ausgenutzt, bei allen anderen Schaltungen muss es hingegen verhindert werden.

Die entscheidende Größe für die Stabilität einer Schaltung ist deshalb die Schleifenverstärkung $\underline{g} = \underline{k} \cdot \underline{H}$. Mit zunehmender Frequenz nimmt der Betrag der Schleifenverstärkung ab und die Phasennacheilung nimmt zu. Wenn die Phasenverschiebung der Schleifenverstärkung 180° erreicht, muss ihr Betrag bereits unter 1 gesunken sein, damit die Schaltung stabil ist.

Die Differenz der Phasenverschiebung zu 180° bei der Frequenz, bei der der Betrag der Schleifenverstärkung 1 ist, bezeichnet man als Phasenreserve. Optimales Einschwingverhalten bei einer sprunghaften Änderung der Eingangsgröße erhält man bei einer Phasenreserve von 65°. Bei einer kleineren Phasenreserve kommt es zu ausgeprägten Überschwingern, akzeptabel sind noch Werte bis etwa 45°. Bei größerer Phasenreserve stellt sich die Ausgangsgröße verzögert auf ihren Endwert ein, d.h. die Schaltung wird unnötig langsam (s. Praktikum).

Die Beurteilung der Stabilität und der Phasenreserve erfolgt am übersichtlichsten im Bode-Diagramm der Schleifenverstärkung. Ein unkompensierter VV-OPV hat einen Frequenzgang, der sich wegen des 3-stufigen Aufbaus im wesentlichen als Produkt von 3 Tiefpässen 1. Ordnung beschreiben lässt:

$$\underline{\mathbf{A}}_{O} = \frac{\mathbf{A}(\mathbf{0})}{\left(1 + j\frac{f}{f_{g1}}\right) \cdot \left(1 + j\frac{f}{f_{g2}}\right) \cdot \left(1 + j\frac{f}{f_{g3}}\right)}$$

Beispiel: A(0) $\approx 10^5$, f_{g1} ≈ 8 kHz, f_{g2} ≈ 200 kHz, f_{g3} ≈ 2 MHz

Für einen Elektrometer-Verstärker ergibt sich daraus eine Schleifenverstärkung von

$$\underline{g} = \mathbf{k} \cdot \underline{\mathbf{A}}_{O} = \frac{\mathbf{k} \cdot \mathbf{A}(\mathbf{0})}{\left(1 + j\frac{\mathbf{f}}{\mathbf{f}_{g1}}\right) \cdot \left(1 + j\frac{\mathbf{f}}{\mathbf{f}_{g2}}\right) \cdot \left(1 + j\frac{\mathbf{f}}{\mathbf{f}_{g3}}\right)}$$

Da k in diesem Fall reell ist, stimmt die Phase der Schleifenverstärkung mit der Phase der OPV-Verstärkung <u>A</u>₀ überein. Der Betrag der Schleifenverstärkung ist im Bode-Diagramm die Differenz zwischen den Kurven $|\underline{A}_0|_{dB}$ und $|1/k|_{dB}$:

Bei genügend weit (ca. Faktor 10) auseinander liegenden Polen erreicht die Phasenverschiebung jeweils ihren asymptotischen Wert, bevor sich der nächste Pol auswirkt. In diesem Fall lässt sich die Frequenz f_o, bei der die Phasenverschiebung 115° beträgt, leicht berechnen. Der erste Pol bewirkt bei dieser Frequenz 90° Phasenverschiebung, der dritte Pol bewirkt noch keine Phasenverschiebung, so dass der zweite Pol bei dieser Frequenz 25° Phasenverschiebung erzeugt:

$$\arctan\left(\frac{f_{o}}{f_{g2}}\right) = 25^{\circ} \implies f_{o} = f_{g2} \cdot \tan(25^{\circ}) \approx \frac{f_{g2}}{2}$$

Der Betrag der Schleifenverstärkung $|\underline{g}_0|$ bei der Frequenz f_0 kann für einen Elektrometerverstärker mit einem unkompensierten OPV aus dem Bode-Diagramm abgelesen werden:

$$\left|\underline{\mathbf{g}}_{\mathrm{o}}\right| = \frac{\mathbf{k} \cdot \mathbf{A}(\mathbf{0}) \cdot \mathbf{f}_{\mathrm{g1}}}{\mathbf{f}_{\mathrm{o}}}$$

Für optimales Einschwingverhalten muss der Betrag der Schleifenverstärkung $|\underline{g}_0|$ bei der Frequenz f_o auf 1 bzw. 0dB abgesunken sein. Daraus ergibt sich ein Maximalwert k_{max} für den Rückkopplungsfaktor bzw. ein Minimalwert A_{min} für die Verstärkung des Elektrometerverstärkers:

$$\left|\underline{g}_{o}\right| = 1 \implies k_{max} = \frac{f_{o}}{A(0) \cdot f_{g1}} = \frac{f_{g2}}{2 \cdot A(0) \cdot f_{g1}} \implies A_{min} = \frac{1}{k_{max}} = \frac{2 \cdot A(0) \cdot f_{g1}}{f_{g2}}$$

Beispiel: $A_{min} \approx 8000$

3.4.2 Universelle Frequenzgangkorrektur

Der Frequenzgang von Standard-OPV's wird üblicherweise intern so korrigiert, dass sie bei allen ohmschen Beschaltungen stabil sind. Die größte Schleifenverstärkung ergibt sich für k = 1, der damit für die Stabilität der kritischste Fall ist:

Bei einem universell kompensierten OPV wird durch einen Kondensator über der Zwischenstufe (Millereffekt) die 1. Tiefpassfrequenz fg1 nach unten verschoben. Der Millereffekt bewirkt gleichzeitig einen kleineren Ausgangswiderstand der Zwischenstufe, so dass f_{g2} nach oben verschoben wird, in der Praxis sogar über f_{g3} hinaus (Polsplitting). Die Millerkapazität wird so dimensioniert, dass die Schleifenverstärkung die Frequenzachse bei der Frequenz fo schneidet, bei der die Phasenverschiebung 115° beträgt. Dies ist wie im letzten Abschnitt bei der Hälfte der zweiten Tiefpass-Grenzfrequenz der Fall (jetzt f_{a3} wegen der Verschiebung von f_{a2}!). Diese Frequenz Transitfrequenz, aleichzeitia da dort wegen k = 1 auch ist die die nichtgegengekoppelte Verstärkung Ao gleich 1 wird.

Die universelle Frequenzgangkorrektur hat zur Folge, dass der Verstärker bei einem Rückkopplungsfaktor k < 1 langsamer wird als notwendig. Kleinsignalmäßig durch die Verkleinerung der Transitfrequenz, großsignalmäßig durch die Verkleinerung der Slew-rate (begrenzter Ladestrom der Eingangsstufe, mit dem die Korrekturkapazität geladen werden kann).

Ein Elektrometerverstärker mit $A_k = 8000$ könnte mit einem unkompensierten OPV stabil betrieben werden und hätte eine Grenzfrequenz von 100kHz. Mit einem universell kompensierten OPV hat der gleiche Elektrometerverstärker nur noch eine Grenzfrequenz von 1MHz/8000 = 125Hz

3.4.3 Partielle Frequenzgangkorrektur

Um den Bandbreiteverlust durch die universelle Frequenzgangkorrektur bei k < 1 zu vermeiden, gibt es teilkompensierte OPV's, bei denen entweder k einen Maximalwert k_{max} nicht überschreiten darf (d.h. die Verstärkung muss einen Mindestwert A_{min} übersteigen) und/oder eine externe Korrekturkapazität angeschlossen werden muss.

Wenn man z.B. bei einer Schaltung k = 0.1 einstellen will (Verstärkung 10 bei Elektrometerverstärker) erhält man bei einem universell kompensierten uA741 eine Grenzfrequenz $f_{gk} = 100$ kHz. Mit dem teilkompensierten uA748 und einer optimal eingestellten Korrekturkapazität kann man dagegen 1MHz erreichen. Die Einstellung der optimalen Korrekturkapazität erfolgt experimentell an Hand der Sprungantwort (s. Praktikum). Richtwerte sind meist in den Datenblättern zu finden.

3.4.4 Externe Kompensation einer kapazitiven Last

Die in der Praxis häufigste Anwendung der Frequenzgangkompensation ist die Kompensation einer kapazitiven Last.

Wenn ein OPV kapazitiv belastet wird, bildet die Lastkapazität zusammen mit dem Ausgangswiderstand r_a des OPV's einen Tiefpass, der zu einer zusätzlichen Phasennacheilung von bis zu 90° führt. Dadurch kann auch ein universell kompensierter OPV instabil werden, bzw. ein unbefriedigendes Einschwingverhalten wegen mangelnder Phasenreserve bekommen, wenn die Grenzfrequenz dieses Tiefpasses $f_L=1/(2\pi r_a C_L)$ kleiner wird als die gegengekoppelte Grenzfrequenz k·f_T ohne Lastkapazität. Wichtig ist, dass für r_a der Ausgangswiderstand des unbeschalteten OPV (beim ua741 ca. 50 Ω) einzusetzen ist, da dieser innerhalb der Schleife wirkt. Dies führt z.B. beim uA741 bei k = 1 und Lastkapazitäten größer ca. 3nF zu einer Verschlechterung des Einschwingverhaltens.

Die Schleifenverstärkung eines kapazitiv belasteten Elektrometerverstärkers kann durch Auftrennen der Rückkopplungsschleife berechnet werden, wobei die Belastung des OPV-Ausgangs durch den Spannungsteiler vernachlässigt wird ($R_N + R_1 >> r_a$):

Die einfachste Möglichkeit, ein stabiles Einschwingverhalten zu erreichen, ist die Einhaltung eines maximalen Rückkopplungsfaktors, d.h. einer gewissen Mindestverstärkung $A_{min} = 1/k_{max}$:

Für die Grenzfrequenz bei geschlossener Schleife ergibt sich in diesem Fall: $f_{gk} = \frac{f_L}{2}$

Bei Verstärkungsfaktoren kleiner als A_{min} kann bei einer rein kapazitiven Last optimales Einschwingverhalten durch Einbau eines Isolationswiderstandes zwischen OPV und Lastkapazität erreicht werden. Die Rückkopplung erfolgt vor dem Isolationswiderstand. Dadurch wird im Frequenzgang der Schleifenverstärkung ein linearer Faktor im Zähler erzeugt, der die von der Lastkapazität verursachte Phasenverschiebung kompensieren kann. Für die Schleifenverstärkung erhält man bei Vernachlässigung der Belastung des OPV-Ausgangs durch den Spannungsteiler:

Für $R_0 >> r_a$ liegen die Nullstelle und der Pol praktisch bei der gleichen Frequenz und kompensieren sich gegenseitig. Damit hat der Frequenzgang die gleiche Form wie ohne Lastkapazität und das Einschwingverhalten verläuft stabil. Die Grenzfrequenz beträgt k·f_T. Allerdings wird durch die Rückkopplung die Spannung <u>U</u>_{a1} stabilisiert und nicht die eigentliche Ausgangsspannung <u>U</u>_a. Bei geschlossener Schleife ergibt sich für die Spannung <u>U</u>_{a1} damit:

$$\frac{\underline{U}_{a1}}{\underline{U}_{e}} = \frac{1}{k} \cdot \frac{1}{1 + \frac{j \cdot f}{k \cdot f_{T}}}$$

Die Ausgangsspannung \underline{U}_a folgt der Spannung \underline{U}_{a1} mit einer Tiefpasscharakteristik, so dass sich für die rückgekoppelte Verstärkung ergibt:

$$\underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{U}_{a1}}{\underline{U}_{e}} \cdot \frac{\underline{U}_{a}}{\underline{U}_{a1}} = \frac{1}{k} \cdot \frac{1}{1 + \frac{j \cdot f}{k \cdot f_{\tau}}} \cdot \frac{1}{1 + j \cdot 2\pi f \cdot R_{0} \cdot C_{L}}$$

Die Grenzfrequenz der Ausgangsspannung ist damit im wesentlichen $1/(2\pi \cdot R_0 C_L)$. In der Praxis wird deshalb R_0 experimentell nur soweit erhöht, bis sich das gewünschte Einschwingverhalten ergibt und der Verstärker nicht unnötig langsam wird.

Wenn die Last auch einen ohmschen Anteil R_L besitzt, führt die Verwendung eines Isolationswiderstandes zu einem Verstärkungsfehler durch den Spannungsteiler zwischen R_0 und R_L . Dies ist oft nicht akzeptabel, so dass in diesem Fall eine doppelte Rückkopplung verwendet wird:

Die Rückkopplung von U_a über den Spannungsteiler sorgt für eine genaue Verstärkung 1/k bei niedrigen Frequenzen. Bei hohen Frequenzen sorgt die Rückkopplung über C_N für Stabilität. Die Schleifenverstärkung kann wieder berechnet werden, wenn die Belastung des OPV-Ausgangs durch den Spannungsteiler und durch C_N vernachlässigt wird:

Knotengleichung am Knoten 1: $\Rightarrow \underline{U}_{k} = k \cdot \frac{\underline{U}_{a} + j_{\underline{\omega}} \cdot R_{N}C_{N} \cdot \underline{U}_{a1}}{1 + j_{\underline{\omega}} \cdot k \cdot R_{N}C_{N}}$

$$\underline{g} = \frac{\underline{U}_{k}}{\underline{U}_{D}} = \frac{\underline{U}_{k}}{\underline{U}_{a0}} \cdot \frac{\underline{U}_{a0}}{\underline{U}_{D}} = k \cdot \frac{\underline{R}_{L}}{\underline{R}_{L} + \underline{R}_{0} + \underline{r}_{a}} \cdot \frac{1 + j\omega \cdot \underline{R}_{N}C_{N} \cdot \frac{\underline{R}_{L} + \underline{R}_{0}}{\underline{R}_{L}} + (j\omega)^{2} \cdot \underline{R}_{N}C_{N} \cdot \underline{R}_{0}C_{L}}{[1 + j\omega \cdot k \cdot \underline{R}_{N}C_{N}] \cdot [1 + j\omega \cdot ((\underline{R}_{0} + \underline{r}_{a})//\underline{R}_{L}) \cdot \underline{C}_{L}]} \cdot \underline{\underline{A}}_{0}$$

Bei richtiger Dimensionierung kann der quadratische Faktor im Zähler die Phasenverschiebung der beiden Pole im Nenner kompensieren, so dass sich optimales Einschwingverhalten ergibt. Da bei hohen Frequenzen durch die Rückkopplung die Spannung <u>U</u>_{a1} stabilisiert wird, ist die Grenzfrequenz bei geschlossener Schleife wie vorher im wesentlichen gleich 1/($2\pi \cdot R_0 C_L$).

In der Praxis wählt man Rückkopplungswiderstände R_N und R_1 mit $R_N+R_1 >> r_a$ und ermittelt R_0 und C_N experimentell anhand der Sprungantwort. Dazu kann man zunächst C_N durch einen Kurzschluss ersetzen und den Wert von R_0 soweit erhöhen bis sich optimales Einschwingverhalten ergibt (allerdings auf den durch den Spannungsteiler zwischen R_0 und R_L verfälschten Wert). Dann setzt man den Kondensator C_N ein und erhöht seinen Wert soweit bis sich optimales Einschwingverhalten auf den korrekten Endwert ergibt.

Bei k < 1 kann für nicht zu große Lastkapazitäten auf den Isolationswiderstand verzichtet werden und nur mit C_N kompensiert werden. In diesem Fall liegt der optimale Wert von C_N ungefähr bei $r_a \cdot C_L/R_N$.

Diese Kompensationsverfahren können auch beim invertierenden Verstärker angewendet werden:

3.4.5 Transimpedanzverstärker (TIV)

Die beiden Eingänge eines TIV sind der Basis- und der Emitteranschluss eines Emitterfolgers $\Rightarrow \underline{U}_D \approx 0$ durch internen Schaltungszwang (auch ohne Rückkopplung!) Die beiden Eingänge verhalten sich dementsprechend sehr unterschiedlich:

Der nichtinvertierende Eingang ist hochohmig $\Rightarrow \underline{I}_{P} \approx 0$. Der invertierende Eingang ist niederohmig.

Die Ausgangsspannung ist proportional zum Strom <u>I</u>_N: <u>U</u>_a = <u>R</u>₀ · <u>I</u>_N (1)

Ein idealer TIV hat einen unendlich großen Widerstand <u>R</u>₀. In diesem Fall folgt aus Gleichung (1), dass der TIV wie ein VV-OPV nur mit Gegenkopplung betrieben werden kann. Die Gegenkopplung sorgt dann dafür, dass der TIV seine Ausgangsspannung so einstellt, dass <u>I</u>_N = 0 wird. Damit herrschen bei einem idealen TIV und bei einem idealen VV-OPV aus unterschiedlichen internen Gründen die gleichen äußeren Verhältnisse:

äußere Verhältnisse	Ursache beim ideal. VV-OPV	Ursache beim idealen TIV
<u>l</u> _P = 0	interne Schaltung	interne Schaltung
<u>l</u> _N = 0	interne Schaltung	unendliche Transimpedanz <u>R</u> 0 und Rückkopplung
$\underline{U}_{D} = 0$	unendliche Spannungsverst. <u>A</u> 0 und Rückkopplung	interne Schaltung

Da bei der Berechnung der idealen VV-OPV-Schaltungen nur die äußeren Verhältnisse verwendet werden, gelten diese Beziehungen auch für die entsprechenden idealen TIV-Schaltungen. Beim Frequenzgang der realen Schaltungen gibt es dagegen große Unterschiede zwischen VV-OPV und TIV. Der Widerstand <u>R</u>₀ hat einen sehr großen Gleichspannungswert R(0) und nimmt bei höheren Frequenzen durch die unvermeidlich parallel liegenden parasitären Kapazitäten und durch den mehrstufigen Aufbau des TIV gemäß einer Tiefpasscharakteristik ab:

 $\underline{\mathbf{R}}_{0} = \frac{\mathbf{R}(0)}{\left(1 + j\frac{f}{f_{g1}}\right) \cdot \left(1 + j\frac{f}{f_{g2}}\right)} \quad (2)$

Um den Frequenzgang einer Schaltung zu berechnen, muss man Gleichung (1) mit dieser Charakteristik in die Knotengleichungen der Schaltung einsetzen. Dies entspricht der Verwendung von $\underline{U}_a = \underline{A}_0 \cdot \underline{U}_D$ bei den realen VV-OPV-Schaltungen wobei $\underline{A}_0 \approx -jf_T/f$ für einen universell kompensierten OPV bzw. \underline{A}_0 analog zu (2) für einen unkompensierten VV-OPV.

Beispiel: Elektrometerverstärker mit TIV

Durch Einsetzen von \underline{I}_N in (1) ergibt sich die Spannungsverstärkung des gegengekoppelten Verstärkers:

Wenn R_N richtig gewählt wird, ist die gegengekoppelte Grenzfrequenz f_{gk} dieser Schaltung immer gleich $f_{g2}/2$:

$$\frac{\mathsf{R}(0)}{\mathsf{R}_{\mathsf{N}}} \cdot \mathsf{f}_{\mathsf{g}^1} = 1 \cdot \frac{\mathsf{f}_{\mathsf{g}^2}}{2} \implies \mathsf{R}_{\mathsf{N}} = \frac{2 \cdot \mathsf{R}(0) \cdot \mathsf{f}_{\mathsf{g}^1}}{\mathsf{f}_{\mathsf{g}^2}}$$

Die Verstärkung kann mit R₁ eingestellt werden: $\underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = 1 + \frac{R_{N}}{R_{1}}$

3.5 Gegengekoppelte Schaltungen

Die Funktion einer allgemeinen gegengekoppelten OPV-Schaltung wird zunächst immer unter der Annahme eines idealen OPV analysiert:

unendliche Differenzverstärkung

keine Eingangsströme

unendliche Ausgangsspannungen und -ströme

Ein solcher idealer OPV kann nur mit Gegenkopplung betrieben werden, da jede noch so kleine Eingangsspannungsdifferenz zu einer unendlichen Ausgangsspannung führt. Die Eigenschaften eines idealen, gegengekoppelten OPV's hängen nur noch vom Rückkopplungsnetzwerk ab.

Die Analyse einer idealen OPV-Schaltung ist relativ einfach:

- 1. Sicherstellen, dass Rückkopplung eine Gegenkopplung ist (Erhöhung der Ausgangsspannung eines OPV muss zu einer Verkleinerung von U_D führen).
- 2. $\underline{U}_{D} = 0$ annehmen

Der OPV stellt seine Ausgangsspannung so ein, dass er über das Rückkopplungsnetzwerk $\underline{U}_D = 0$ erzeugt (Dass er das kann, wurde in Punkt 1 sichergestellt).

- 3. Eingänge auftrennen, da sie keinen Strom aufnehmen
- 4. Alle Knotenspannungen eintragen (evtl. Hilfsspannungen einführen) und Knotengleichungen aufstellen (eine für gesuchten Zusammenhang (Übertragungsfunktion, Eingangs- bzw. Ausgangswiderstand, je eine für jede Hilfsspannung).
- 5. Aus Knotengleichungen alle Variablen eliminieren bis auf die zwei, deren Zusammenhang gesucht ist.
- 6. Mit dem Ergebnis der Analyse muss überprüft werden, ob der OPV in der Lage ist, bei einem gegebenen Eingangssignal die berechneten Ausgangsspannungen, Ausgangsströme und Anstiegsgeschwindigkeiten zu liefern.

Bei Bedarf kann die Analyse noch um folgenden Punkt ergänzt werden:

7. Wenn die Schaltung bei höheren Frequenzen arbeitet, muss statt $\underline{U}_D = 0$ $\underline{U}_D = \underline{U}_a / \underline{A}_o$ angenommen werden und im Ergebnis $\underline{A}_o = -j \cdot f_T / f$ eingesetzt werden. Dies liefert die Grenzfrequenz und das Einschwingverhalten der Schaltung.

3.5.1 I/U-Wandler

Knotengleichung am Knoten 1:

$$\underline{H}_{k} = \frac{\underline{U}_{a}}{\underline{I}_{q}} = \frac{-\underline{Z}_{N}}{1 + \frac{1}{\underline{A}_{0}} \cdot \frac{\underline{Z}_{q} + \underline{Z}_{N}}{\underline{Z}_{q}}} \qquad \qquad \underline{Z}_{e} = \frac{\underline{U}_{e}}{\underline{I}_{e}} = \frac{\underline{Z}_{N}}{1 + \underline{A}_{0}}$$

Der Vergleich mit dem verallgemeinerten Gegenkopplungsmodell liefert für die Schleifenverstärkung:

$$\underline{\mathbf{g}} = \underline{\mathbf{A}}_{0} \cdot \frac{\underline{\mathbf{Z}}_{q}}{\underline{\mathbf{Z}}_{q} + \underline{\mathbf{Z}}_{N}}$$

Anwendungen:

1) I/U-Wandler für Stromquellen mit ohmschem Innenwiderstand ($\underline{Z}_q = R_q$)

In diesem Fall wird im Rückkopplungszweig ein ohmscher Widerstand verwendet $(\underline{Z}_N = R_N)$, da die Phasennacheilung der Schleifenverstärkung bei einem universell kompensierten OPV in diesem Fall maximal 115° beträgt.

 $\text{idealer OPV:} \quad \underline{H}_{k} = \frac{\underline{U}_{a}}{\underline{I}_{a}} = -R_{N}$

realer OPV:
$$\underline{H}_{k} = \frac{\underline{U}_{a}}{\underline{I}_{q}} \approx \frac{-R_{N}}{1+j \cdot \frac{f}{f_{T}} \cdot \frac{R_{q}+R_{N}}{R_{q}}} \implies f_{gk} = f_{T} \cdot \frac{R_{q}}{R_{q}+R_{N}}$$

2) I/U-Wandler für Stromquellen mit kapazitivem Innenwiderstand ($\underline{Z}_q = 1/j\omega C_q$), z.B. Fotodioden

Schleifenverst. bei realem OPV und $\underline{Z}_N = R_N$: $\underline{g} = \underline{A}_0 \cdot \frac{\underline{Z}_q}{\underline{Z}_q + \underline{Z}_N} = \underline{A}_0 \cdot \frac{1}{1 + j\omega R_N C_1}$

Da der zusätzliche Pol bei 1/($2\pi R_N C_1$) weitere 90° Phasennacheilung produziert, muss seine Frequenz mindestens 2·f_T betragen, wenn das Einschwingverhalten akzeptabel sein soll: $R_N \leq \frac{1}{2\pi \cdot 2f_T \cdot C_q}$

Bei größerem R_N muss im Rückkopplungszweig eine Parallelschaltung aus einem ohmschen Widerstand R_N und einer Kapazität C_N verwendet werden $(\underline{Z}_N = \frac{R_N}{1 + j\omega R_N C_N})$. Die parallel geschaltete Kapazität liefert einen Linearfaktor im

Zähler der Schleifenverstärkung, der bei richtiger Dimensionierung die Phasennacheilung teilweise kompensiert.

$$\underline{H}_{k} = \frac{\underline{U}_{a}}{\underline{I}_{q}} \approx \frac{-\frac{R_{N}}{1+j\omega R_{N}C_{N}}}{1+j\cdot \frac{f}{f_{T}} \cdot \frac{\frac{1}{j\omega C_{q}} + \frac{R_{N}}{1+j\omega R_{N}C_{N}}}{\frac{1}{j\omega C_{q}}} = \frac{-\frac{R_{N}}{1+j\omega R_{N}C_{N}}}{1+j\cdot \frac{f}{f_{T}} \cdot \left(1+\frac{j\omega R_{N}C_{q}}{1+j\omega R_{N}C_{N}}\right)}$$

$$=\frac{-\mathsf{R}_{N}}{1+j\omega\mathsf{R}_{N}\mathsf{C}_{N}+\frac{j\omega}{2\pi\mathsf{f}_{T}}\left(1+j\omega\mathsf{R}_{N}\mathsf{C}_{N}+j\omega\mathsf{R}_{N}\mathsf{C}_{q}\right)}=\frac{-\mathsf{R}_{N}}{1+j\omega\left(\mathsf{R}_{N}\mathsf{C}_{N}+\frac{1}{2\pi\mathsf{f}_{T}}\right)+\left(j\omega\right)^{2}\frac{\mathsf{R}_{N}\left(\mathsf{C}_{N}+\mathsf{C}_{q}\right)}{2\pi\mathsf{f}_{T}}}$$

Für optimales Einschwingverhalten muss die Polgüte $1/\sqrt{2}$ betragen. Aus dieser Forderung kann C_N berechnet werden:

$$C_{N}^{opt} = \frac{1}{2\pi f_{T}R_{N}} \cdot \sqrt{4\pi f_{T}R_{N}C_{q} - 1}$$

Bei dieser Dimensionierung ist die Grenzfrequenz der gegengekoppelten Schaltung gleich der Polfrequenz:

$$f_{gk}^{opt} = f_{p} = \frac{\omega_{p}}{2\pi} = \sqrt{\frac{f_{T}}{2\pi \cdot R_{N} \cdot \left(C_{N}^{opt} + C_{q}\right)}}$$

Wenn C_N größer als der optimale Wert gewählt wird (Überkompensation), zerfällt der quadratische Faktor im Nenner des Frequenzganges H_k und die Grenzfrequenz sinkt auf:

$$f_{gk} = \frac{1}{2\pi R_N C_N}$$

3.5.2 Umkehrverstärker

Der Umkehrverstärker ist ein I/U-Wandler, bei dem die Stromquelle einen Strom von \underline{U}_e/R_1 liefert und einen Innenwiderstand R_1 besitzt:

Umkehrverstärker werden häufig angewendet, wenn die Gleichtaktaussteuerung ein Problem ist, da das Potential seiner Eingänge nahezu konstant ist (virtuelle Masse). Sein relativ niedriger Eingangswiderstand R₁ wird dabei in Kauf genommen. In Single-Supply-Schaltungen lassen sich Umkehrverstärker jedoch nur verwenden, wenn man ihre Common-Mode-Spannung so weit anhebt, dass die Ausgangsspannung auch bei positiven Eingangsspannungen positiv ist:

Die Invertierung des Signals kann bei Bedarf durch einen zweiten Umkehrverstärker wieder beseitigt werden:

3.5.3 Addierer

Addierer mit Umkehrverstärker:

Addierer mit nicht-invertierendem Verstärker:

3.5.4 Subtrahierer (Differenzverstärker)

Grundschaltung:

Die Funktion des Subtrahierers kann man am einfachsten mit dem Überlagerungsprinzip verstehen:

Wenn nur U₁ wirksam ist, d.h. U₂ kurzgeschlossen ist, hat man einen Elektrometerverstärker mit einer Verstärkung $1+R_N/R_1$. Diesem ist ein Spannungsteiler mit Teilfaktor $R_N/(R_1 + R_N)$ vorgeschaltet, so dass sich als Ausgangsspannung ergibt:

$$\mathbf{U}_{a1} = \left(\mathbf{1} + \frac{\mathbf{R}_{N}}{\mathbf{R}_{1}}\right) \cdot \frac{\mathbf{R}_{N}}{\mathbf{R}_{1} + \mathbf{R}_{N}} \cdot \mathbf{U}_{1} = \frac{\mathbf{R}_{N}}{\mathbf{R}_{1}} \cdot \mathbf{U}_{1}$$

Wenn nur U_2 wirksam ist, d.h. U_1 kurzgeschlossen ist, hat man einen Umkehrverstärker mit einer Verstärkung $-R_N/R_1$, so dass sich als Ausgangsspannung ergibt:

$$U_{a2} = -\frac{R_N}{R_1} \cdot U_2$$

Die gesamte Ausgangsspannung ist die Summe aus beiden Beiträgen:

$$U_{a} = U_{a1} + U_{a2} = \frac{R_{N}}{R_{1}} (U_{1} - U_{2})$$

Die Gleichtaktunterdrückung der Schaltung wird durch die Gleichtaktunterdrückung des OPV und durch die Paarungstoleranz der Widerstände R₁ und R_N begrenzt.

Zu beachten ist, dass die beiden Eingangswiderstände sehr unterschiedlich sind. am invertierenden Eingang beträgt der Eingangswiderstand R₁ und am nichtinvertierenden Eingang R₁ + R_N. Der Innenwiderstand der Spannungsquellen muss deshalb wesentlich kleiner als R₁ sein oder die Eingangsspannungen müssen mit Spannungsfolgern gepuffert werden.

Verbesserte Schaltung mit hohem Eingangswiderstand:

Verbesserte Schaltungen mit hohem Eingangswiderstand und hoher Common-Mode-Unterdrückung:

3.5.5 U/I-Wandler für geerdete Verbraucher und große Ausgangsströme

3.5.6 Integrator

Grundschaltung:

Analyse im Zeitbereich:

Setzen der Anfangsbedingung:

TW 28.06.04 ST_3

Analyse im Frequenzbereich:

Der Integrator ist ein I/U-Wandler mit $I_q = \frac{U_e}{R_1}$, $\underline{Z}_q = R_1$ und $\underline{Z}_N = \frac{1}{j\omega C_N}$:

$$\underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{U}_{a}}{\underline{I}_{q}} \cdot \frac{\underline{I}_{q}}{\underline{U}_{e}} = -\frac{\underline{Z}_{N}}{R_{1}} = -\frac{1}{j\omega R_{1}C_{N}} \quad \text{wenn } |\underline{g}| >> 1$$
$$\underline{g} = \underline{A}_{0} \cdot \frac{\underline{Z}_{q}}{\underline{Z}_{q} + \underline{Z}_{N}} = \underline{A}_{0} \cdot \frac{j\omega R_{1}C_{N}}{1 + j\omega R_{1}C_{N}}$$

Grenzfrequenz und Stabilität:

Der OPV Frequenzgang ist intern so kompensiert, dass er bei dem häufigsten Anwendungsfall des rein ohmschen Rückkopplungsnetzes stabil ist. Bei Verwendung eines komplexen Rückkopplungsnetzes muss deshalb die Stabilität immer überprüft werden. Der Integrator ist eine sehr stabile Schaltung, da seine Schleifenverstärkung wegen des zusätzlichen Hochpass-Faktors sogar weniger als 115° Phasennacheilung besitzt.

Der Integrator besitzt eine untere und eine obere Grenzfrequenz, die durch $|\underline{g}| = 1$ bestimmt sind:

$$f_{gku} = \frac{1}{2\pi R_1 C_N \cdot A(0)} \qquad \qquad f_{gko} = f_T$$

Da die Verstärkung A_k für f→0 gegen A(0) geht und damit bei ca. 100000 liegt, führen bereits kleine Offsetspannungen und Biasströme dazu, dass der OPV übersteuert wird. Die effektive Eingangsspannung aufgrund der Offsetspannung U_{OS} und aufgrund des Offsets I_O der beiden Biasströme (bei Verwendung eines Kompensationswiderstandes R₁ in der Anschlussleitung des nichtinvertierenden Eingangs) beträgt $|U_{OS}| + R_1 \cdot |I_O|$. Damit ergibt sich als Anforderung an die Offsetgrößen:

$$\left| \mathsf{U}_{\mathsf{OS}} \right| + \mathsf{R}_{\mathsf{1}} \cdot \left| \mathsf{I}_{\mathsf{O}} \right| < \frac{\left| \mathsf{U}_{\mathsf{a}^{\pm}} \right|}{\mathsf{A}(\mathsf{0})}$$

Wenn diese Bedingung nicht eingehalten werden kann, kann der Kondensator z.B. periodisch entladen werden wie beim Setzen der Anfangsbedingung besprochen.

Eine andere Möglichkeit ist die Parallelschaltung eines großen Widerstandes R_N parallel zu C_N :

TW 28.06.04 ST_3

$$\underline{Z}_{N} = \frac{1}{1/R_{N} + j\omega C_{N}} = \frac{R_{N}}{1 + j\omega R_{N}C_{N}} \quad \Rightarrow \quad \underline{A}_{k} = -\frac{\underline{Z}_{N}}{R_{1}} = \frac{-R_{N}/R_{1}}{1 + j\omega R_{N}C_{N}} \text{ für } |\underline{g}| >> 1$$

Dies ist der Frequenzgang eines Verstärkers mit einer Verstärkung - R_N/R_1 und einer Grenzfrequenz $1/2\pi R_N C_N$.

Bode-Diagramm:

Der Parallelwiderstand reduziert die Verstärkung bei $f \rightarrow 0$ von A(0) auf R_N/R₁. Allerdings steigt dadurch auch die untere Grenzfrequenz des Integrators an:

$$f_{gku} = \frac{1}{2\pi R_1 C_N \cdot R_N / R_1} = \frac{1}{2\pi R_N C_N}$$
3.5.7 Differentiator

Prinzipschaltung:

Analyse im Zeitbereich:

Kompensierter Differentiator (bei Single-Supply-Schaltungen $U_0 \neq 0$):

TW 28.06.04 ST_3

Analyse im Frequenzbereich:

Der Differentiator ist ein I/U-Wandler mit $\underline{I}_q = j\omega C_1 \cdot \underline{U}_e$, $\underline{Z}_q = \frac{1}{j\omega C_1}$ und $\underline{Z}_N = R_N$:

$$\underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{U}_{a}}{\underline{I}_{q}} \cdot \frac{\underline{I}_{q}}{\underline{U}_{e}} = -j\omega R_{N}C_{1} \text{ wenn } |\underline{g}| >> 1$$
$$\underline{g} = \underline{A}_{0} \cdot \frac{\underline{Z}_{q}}{\underline{Z}_{q} + \underline{Z}_{N}} = \underline{A}_{0} \cdot \frac{1}{1 + j\omega R_{N}C_{1}}$$

Grenzfrequenz und Stabilität:

Der Differentiator neigt stark zur Instabilität, da seine Schleifenverstärkung oberhalb der Frequenz 1/($2\pi R_N C_1$) bis zu 180° Phasennacheilung besitzt. Nur wenn 1/($2\pi R_N C_1$) $\ge 2 \cdot f_T$ erfüllt ist, kann der Differentiator ohne Kompensationsmaßnahmen in der Prinzipschaltung betrieben werden (s. 3.5.1).

Zur Kompensation kann wie in 3.5.1 eine Kapazität parallel zu R_N verwendet werden:

$$\underline{I}_{q} = j\omega C_{1} \cdot \underline{U}_{e}, \ \underline{Z}_{q} = \frac{1}{j\omega C_{1}} \ \text{und} \ \underline{Z}_{N} = \frac{R_{N}}{1 + j\omega R_{N}C_{N}}$$
$$\underline{A}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{U}_{a}}{\underline{I}_{q}} \cdot \frac{\underline{I}_{q}}{\underline{U}_{e}} = \frac{-j\omega R_{N}C_{1}}{1 + j\omega \left(R_{N}C_{N} + \frac{1}{2\pi f_{T}}\right) + (j\omega)^{2} \cdot \frac{R_{N} \cdot (C_{N} + C_{1})}{2\pi f_{T}}}$$

Optimales Einschwingverhalten:

$$C_{N}^{opt} = \frac{1}{2\pi f_{T}R_{N}} \cdot \sqrt{4\pi f_{T}R_{N}C_{1} - 1}$$

$$f_{gk}^{opt} = f_{p} = \frac{\omega_{p}}{2\pi} = \sqrt{\frac{f_{T}}{2\pi \cdot R_{N} \cdot (C_{N}^{opt} + C_{1})}}$$

n (C_N > C_N^{opt}): $f_{gk} = \frac{1}{2\pi R_{N} C_{N}}$

Bei Überkompensation ($C_N > C_N^{opt}$): $f_{gk} = \frac{1}{2\pi R_N C_N}$

Eine andere Kompensationsmöglichkeit ist ein Widerstand R1 in Serie zu C1:

$$\begin{split} I_{q} &= \frac{\underline{U}_{e}}{R_{1} + \frac{1}{j\omega C_{1}}}, \ \underline{Z}_{q} = R_{1} + \frac{1}{j\omega C_{1}} \ \text{und} \ \underline{Z}_{N} = R_{N} \\ \\ \underline{A}_{k} &= \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\underline{U}_{a}}{I_{q}} \cdot \frac{I_{q}}{\underline{U}_{e}} \approx \frac{-R_{N}}{1 + j \cdot \frac{f}{f_{T}}} \cdot \frac{R_{1} + \frac{1}{j\omega C_{1}} + R_{N}}{R_{1} + \frac{1}{j\omega C_{1}}} \cdot \frac{1}{R_{1} + \frac{1}{j\omega C_{1}}} \\ &= \frac{-R_{N}}{R_{1} + \frac{1}{j\omega C_{1}} + j \cdot \frac{f}{f_{T}}} \cdot \left(R_{1} + \frac{1}{j\omega C_{1}} + R_{N}\right) = \frac{-j\omega R_{N} C_{1}}{1 + j\omega \cdot \left(R_{1} C_{1} + \frac{1}{2\pi f_{T}}\right) + (j\omega)^{2} \cdot \frac{(R_{1} + R_{N}) \cdot C_{1}}{2\pi f_{T}}} \end{split}$$

Optimales Einschwingverhalten:

en:

$$R_{1}^{opt} = \frac{1}{2\pi f_{T}C_{1}} \cdot \sqrt{4\pi f_{T}R_{N}C_{1} - 1}$$

$$f_{gk}^{opt} = f_{p} = \frac{\omega_{p}}{2\pi} = \sqrt{\frac{f_{T}}{2\pi \cdot (R_{1}^{opt} + R_{N}) \cdot C_{1}}}$$

$$R_{1}^{opt}): \quad f_{gk} = \frac{1}{2\pi R_{1}C_{1}}$$

Bei Überkompensation (R₁ > R₁^{opt}): $f_{gk} = \frac{1}{2\pi R_1 C_1}$

Die Kompensationsmethode mit C_N hat den Nachteil, dass der Eingangswiderstand bei hohen Frequenzen so klein wird, dass der Innenwiderstand der Signalquelle die Ausgangsspannung beeinflusst. Deshalb wird in der Praxis meist die Kompensation mit R_1 angewandt. Wenn wegen der Rauschbandbreite überkompensiert werden soll, bringt eine Kompensation mit R_1 und C_N Vorteile. In diesem Fall wird $R_1C_1 = R_NC_N$ gewählt, wobei die Grenzfrequenz f_{gk} auf $1/(\sqrt{2}\cdot 2\pi R_1C_1)$ abnimmt.

Bode-Diagramm:

3.5.8 Analoger PID-Regler

Wie man aus dem Schaltplan ablesen kann, ist die Stellgröße bestimmt durch:

$$U_{\text{Stell}} = K_{P} \cdot \left(\Delta U + \frac{1}{T_{N}} \cdot \int \Delta U dt + T_{V} \frac{d(\Delta U)}{dt} \right) \quad \text{mit} \quad \Delta U = U_{\text{Soll}} - U_{\text{Ist}} \quad \text{und} \quad T_{N} = R_{1} \cdot C_{N}$$
$$T_{V} = R_{N} \cdot C_{1}$$

Der Proportionalbeiwert K_P (= Verstärkung), die Nachstellzeit T_N (= Integrationszeitkonstante) und die Vorhaltzeit T_V (= Differentiationszeitkonstante) können über die drei variablen Widerstände (Potentiometer) unabhängig voneinander eingestellt werden. Die optimale Einstellung der Reglerparameter hängt sehr stark von der Regelstrecke ab und ist Gegenstand der Regelungstechnik.

Bode-Diagramm:

ח/ ח

17

3.6 Analog-Schalter

Prinzip:

Anwendungen:

Sample-and-Hold-Schaltung:

Integrator für Single-Supply-Schaltungen:

Switched-Capacitor (SC)-Schaltungen:

Wenn die beiden Schalter mit einer Frequenz f_C abwechselnd geschlossen und geöffnet werden, wird pro Taktzyklus die Ladung $\Delta Q = C \cdot (U_1 - U_2)$ zwischen den beiden Spannungen U₁ und U₂ transferiert. Dies entspricht einem mittleren Stromfluss $I = \frac{\Delta Q}{T_c} = C \cdot (U_1 - U_2) \cdot f_c$. Die Schaltung verhält sich also bei Frequenzen $f \ll f_C$ wie ein ohmscher Widerstand der Größe $R_c = \frac{1}{C \cdot f_c}$.

Da Kapazitätsverhältnisse in integrierten Schaltungen sehr präzise herstellbar sind, wird diese Schaltung besonders für Filter eingesetzt. Ein zusätzlicher Vorteil ist, dass die Grenzfrequenz dieser sog. SC-Filter über die Taktfrequenz f_C einstellbar ist.

3.7 Mitgekoppelte Schaltungen

3.7.1 Komparator

Ein Komparator ist ähnlich wie ein OPV ein Verstärker mit einer im Idealfall unendlichen Verstärkung. Er wird jedoch ohne Gegenkopplung betrieben, so dass es nur zwei Ausgangszustände gibt:

Die Spannungen U_{a+} und U_{a-} liegen in der Nähe der positiven und negativen Versorgungsspannung (0...2V).

Eine der beiden Eingangsspannungen bildet die Referenzspannung, das sog. Triggerniveau und liegt auf konstantem Potential. Die andere Eingangsspannung ist die Signalspannung und wird damit verglichen. Daraus ergeben sich folgende Übertragungskennlinien:

nichtinvertierender Komparator

invertierender Komparator

Anwendungen: Triggerschaltungen

Da ein Komparator ohne Gegenkopplung betrieben wird, kann es auch keine Stabilitätsprobleme durch Phasenverschiebungen der Ausgangsspannung geben. Deshalb werden Komparatoren nicht frequenzgangkompensiert, um ihre volle Geschwindigkeit ausnutzen zu können. Komparatoren sind also nicht einfach OPV's mit entsprechender Beschaltung, sondern speziell auf maximale Schaltgeschwindigkeit optimierte Schaltungen.

Praktisch ausgeführte Komparatoren werden in der Regel mit open-collector- bzw. open-drain-Ausgang ausgeführt und müssen mit einem pull-up-Widerstand am Ausgang versehen werden. Dies hat den Vorteil, dass sie sich unabhängig von der Versorgungsspannung auf beliebige logische H-Pegel einstellen lassen.

Manchmal werden Komparatoren auch mit einem eigenen Anschluss für den digitalen L-Pegel ausgeführt, der dann allerdings zwischen den beiden Versorgungsspannungen liegen muss.

Trotz dieser Optimierung ist der Anstieg der Ausgangsspannung unbefriedigend, wenn sich das Eingangssignal nur sehr langsam ändert. Außerdem kann es zu einem Hin- und Herschalten an der Triggerschwelle kommen, wenn das Eingangssignal verrauscht ist:

Beide Nachteile lassen sich beheben, wenn man einen Bruchteil der Ausgangsspannung so zurückkoppelt, dass er das Eingangssignal verstärkt (Mitkopplung).

Dadurch erreicht man auch bei langsam ansteigenden Eingangssignalen einen steilen Anstieg der Ausgangsspannung, da diese sich selbst verstärkt.

Außerdem ergibt sich eine Hysterese, da sich die Ausgangsspannung selbst in dem gerade befindlichen Zustand festhält.

Zu den beiden Komparatorschaltungen gibt es entsprechend zwei mitgekoppelte Triggerschaltungen.

3.7.2 Nichtinvertierender Schmitt-Trigger

$$U_e < -U_b \implies U_P < U_N \implies U_a = U_{a-1}$$

$$\Rightarrow \quad U_{\mathsf{P}} = U_{\mathsf{e}} + \frac{\mathsf{R}_{\mathsf{1}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \left(U_{\mathsf{a}_{-}} - U_{\mathsf{e}} \right) \quad \Rightarrow \quad U_{\mathsf{P}} = \frac{\mathsf{R}_{\mathsf{N}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot U_{\mathsf{e}} + \frac{\mathsf{R}_{\mathsf{1}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot U_{\mathsf{a}_{-}}$$

Wenn U_e steigt, steigt auch U_P, während U_N = U_{ref} bleibt. Wenn U_e soweit gestiegen ist, dass U_P = U_{ref} wird, ist die Umschaltschwelle U_e \uparrow erreicht:

$$\frac{R_{_N}}{R_{_1}+R_{_N}} \cdot U_{_{e\uparrow}} + \frac{R_{_1}}{R_{_1}+R_{_N}} \cdot U_{_{a-}} = U_{_{ref}} \quad \Longrightarrow \quad U_{_{e\uparrow}} = \frac{R_{_1}+R_{_N}}{R_{_N}} \cdot U_{_{ref}} - \frac{R_{_1}}{R_{_N}} \cdot U_{_{a-}} = \frac{R_{_1}+R_{_N}}{R_{_N}} \cdot U_{_{ref}} - \frac{R_{_1}}{R_{_N}} \cdot U_{_{ref}} - \frac{R_{_1$$

Wenn U_e um einen infinitesimalen Betrag weiter steigt, ist $U_P > U_N$ und die Ausgangsspannung springt auf U_{a+} .

Damit springt aber auch U_P auf
$$U_P = \frac{R_N}{R_1 + R_N} \cdot U_e + \frac{R_1}{R_1 + R_N} \cdot U_{a+1}$$

Dadurch bleibt $U_P > U_N$, auch wenn U_e sofort wieder abnimmt. Erst wenn U_e wieder soweit abgenommen hat, dass U_P wieder U_{ref} erreicht, ist die Umschaltschwelle $U_{e\downarrow}$ erreicht:

$$\Rightarrow \mathsf{U}_{\mathsf{e}\downarrow} = \frac{\mathsf{R}_1 + \mathsf{R}_{\mathsf{N}}}{\mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{ref}} - \frac{\mathsf{R}_1}{\mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{a}+\mathsf{N}}$$

Man erhält also eine Hysterese mit einer Breite von $\Delta U_e = U_{e\uparrow} - U_{e\downarrow} = \frac{R_1}{R_N} \cdot (U_{a+} - U_{a-})$

Die Lage der Hysterese kann mit der Referenzspannung U_{ref} verschoben werden. Die Referenzspannung kann mit einem Spannungsteiler aus der Betriebsspannung, mit einer Zenerdiode oder durch eine externe Steuerspannung erzeugt werden.

$$\label{eq:Dimensionlerung: U_{ref} = \frac{U_{e\uparrow} \cdot U_{a+} - U_{e\downarrow} \cdot U_{a-}}{U_{a+} - U_{a-} + U_{e\uparrow} - U_{e\downarrow}} \qquad \qquad \frac{R_1}{R_N} = \frac{U_{e\uparrow} - U_{e\downarrow}}{U_{a+} - U_{a-}}$$

3.7.3 Invertierender Schmitt-Trigger

$$U_{e} < -U_{b} \quad \Rightarrow \quad U_{P} > U_{N} \quad \Rightarrow \quad U_{a} = U_{a+}$$

$$\Rightarrow \quad U_{\mathsf{P}} = U_{\mathsf{ref}} + \frac{\mathsf{R}_{\mathsf{1}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \left(\mathsf{U}_{\mathsf{a}^{+}} - \mathsf{U}_{\mathsf{ref}}\right) \quad \Rightarrow \quad U_{\mathsf{P}} = \frac{\mathsf{R}_{\mathsf{N}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{ref}} + \frac{\mathsf{R}_{\mathsf{1}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{a}^{+}}$$

Wenn U_e steigt, bleibt U_a = U_{a+} und damit auch U_P konstant. Wenn U_e = U_P wird, ist die Umschaltschwelle U_e \downarrow erreicht:

$$\Rightarrow U_{e\downarrow} = \frac{R_{_N}}{R_{_1} + R_{_N}} \cdot U_{_{ref}} + \frac{R_{_1}}{R_{_1} + R_{_N}} \cdot U_{_{a+}}$$

Wenn U_e um einen infinitesimalen Betrag weiter steigt, ist $U_N > U_P$ und die Ausgangsspannung springt auf $U_{a\text{-}}$.

Damit springt aber auch U_P auf $U_P = \frac{R_N}{R_1 + R_N} \cdot U_{ref} + \frac{R_1}{R_1 + R_N} \cdot U_{a-}$

Dadurch bleibt $U_N > U_P$, auch wenn U_e sofort wieder abnimmt. Erst wenn U_e wieder soweit abgenommen hat, dass es wieder U_P erreicht, ist die Umschaltschwelle $U_{e\uparrow}$ erreicht:

$$\Rightarrow \mathsf{U}_{e\uparrow} = \frac{\mathsf{R}_{\mathsf{N}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{ref}} + \frac{\mathsf{R}_{\mathsf{1}}}{\mathsf{R}_{\mathsf{1}} + \mathsf{R}_{\mathsf{N}}} \cdot \mathsf{U}_{\mathsf{a}_{-}}$$

Auch hier erhält man also eine Hysterese mit einer Breite von

$$\Delta U_{e} = U_{e\downarrow} - U_{e\uparrow} = \frac{R_{1}}{R_{1} + R_{N}} \cdot \left(U_{a+} - U_{a-} \right)$$

Die Lage der Hysterese kann mit der Referenzspannung U_{ref} verschoben werden.

Dimensionierung:
$$U_{ref} = \frac{U_{e\uparrow} \cdot U_{a+} - U_{e\downarrow} \cdot U_{a-}}{U_{a+} - U_{a-} + U_{e\uparrow} - U_{e\downarrow}} \quad \frac{R_1}{R_N} = \frac{U_{e\downarrow} - U_{e\uparrow}}{U_{a+} - U_{a-} + U_{e\uparrow} - U_{e\downarrow}}$$

3.7.4 Präzisions-Schmitt-Trigger

Nachteilig an den einfachen Schmitt-Triggern ist, dass die Schaltschwellen von den nicht sehr genau definierten Spannungen U_{a+} und U_{a-} abhängen.

Präzisions-Schmitt-Trigger verwenden zwei Komparatoren für den Vergleich mit zwei vorgegeben Spannungen U₁ und U₂, die die Schaltschwellen festlegen:

Die Mitkopplung und damit die steile Schaltflanke und die Hysterese wird durch ein nachgeschaltetes Flip-Flop erreicht. Je nachdem, welchen der beiden Flip-Flop-Ausgänge man verwendet, erhält man einen invertierenden oder einen nichtinvertierenden Schmitt-Trigger. Um einen undefinierten Flip-Flop-Zustand zu vermeiden, muss $U_2 > U_1$ gelten.

Nach diesem Prinzip ist z.B. der Timer-Baustein 555 aufgebaut:

3.8 Rauschen in OPV-Schaltungen

Beim OPV denkt man sich das gesamte Rauschen als von zwei Ersatzrauschquellen verursacht und betrachtet den OPV als rauschfrei:

- \tilde{U}_{rV} : Rauschspannungsdichte in V/ \sqrt{Hz}
- \tilde{I}_{rv} : Rauschstromdichte in A/ \sqrt{Hz}

Da der OPV immer mit Rückkopplung betrieben wird, muss das thermische Rauschen der Rückkopplungswiderstände mitberücksichtigt werden: $\tilde{U}_{rth} = \sqrt{4k_BTR}$

Bei der Berechnung der Rauschspannungsdichte \tilde{U}_{ra} am Verstärkerausgang stellt die Signalquelle einen Kurzschluss (Spannungsquelle) oder eine Unterbrechung (Stromquelle) dar. Die folgende Konfiguration ist deshalb das Rausch-Ersatzschaltbild für den Elektrometerverstärker, den Umkehrverstärker und den I/U-Wandler:

Einzelne Widerstände und die dazugehörigen thermischen Rauschquellen können bei den verschiedenen Verstärkertypen verschwinden:

 $\begin{array}{ll} \mbox{Elektrometerverstärker:} & R_{q-}=0 \\ \mbox{Umkehrverstärker:} & R_{q+}=0 \mbox{ (manchmal } R_{q+}\neq 0 \mbox{ für } Ruhestromkomp.) \\ \mbox{I/U-Wandler:} & R_1=0, \mbox{ } R_{q+}=0 \mbox{ (manchmal } R_{q+}\neq 0 \mbox{ für } R.-komp.) \\ \end{array}$

Für die Berechnung können die beiden Widerstände R_{q-} und R_1 zu einem effektiven Widerstand R_{1q} zusammengefasst werden. Auch die beiden zugehörigen Rauschquellen können zu einer effektiven Rauschquelle zusammengefasst werden:

$$\begin{split} R_{1q} &= R_1 + R_{q-} \\ \widetilde{U}_{r1q} &= \sqrt{\widetilde{U}_{r1}{}^2 + \widetilde{U}_{rq-}{}^2} = \sqrt{4k_BTR_1 + 4k_BTR_{q-}} = \sqrt{4k_BTR_{1q}} \end{split}$$

Der Beitrag der 5 Rauschquellen \tilde{U}_{rV} , \tilde{I}_{rV} , \tilde{U}_{rq+} , \tilde{U}_{r1q} , \tilde{U}_{rN} zur Ausgangsspannung \tilde{U}_{ra} kann nach dem Überlagerungsprinzip getrennt berechnet werden. Dabei soll zunächst der OPV als ideal angenommen werden ($U_D = 0$):

1) Beitrag von \tilde{U}_{rV} :

$$\Rightarrow \widetilde{U}_{ra1} = \left(1 + \frac{R_N}{R_{1q}}\right) \cdot \widetilde{U}_{rV}$$

2) Beitrag von \widetilde{I}_{rV} :

3) Beitrag von \tilde{U}_{rq+} :

4) Beitrag von \widetilde{U}_{1q} :

$$\widetilde{U}_{ra4} = -\frac{R_N}{R_{1q}} \cdot \widetilde{U}_{1q} = -\frac{R_N}{R_{1q}} \cdot \sqrt{4k_B T R_{1q}}$$

5) Beitrag von \tilde{U}_{rN} :

invertierender Eingang virtuell auf Masse \Rightarrow kein Strom durch R_{1q} und R_N

$$\widetilde{U}_{ra5} = \widetilde{U}_{rN} = \sqrt{4k_BTR_N}$$

Weil die einzelnen Rauschbeiträge keine feste Phasenbeziehung zueinander besitzen, erhält man die gesamte Rauschspannungsdichte \tilde{U}_{ra} am Ausgang, indem man die <u>Betragsquadrate</u> der einzelnen Rauschspannungsdichten addiert:

$$\begin{split} \widetilde{U}_{ra}^{2} &= \left|\widetilde{U}_{ra1}\right|^{2} + \left|\widetilde{U}_{ra2}\right|^{2} + \left|\widetilde{U}_{ra3}\right|^{2} + \left|\widetilde{U}_{ra4}\right|^{2} + \left|\widetilde{U}_{ra5}\right|^{2} \\ \Rightarrow & \left|\widetilde{U}_{ra}^{2} = \left(1 + \frac{R_{N}}{R_{1q}}\right)^{2} \cdot \left[\widetilde{U}_{rV}^{2} + \left(R_{1q} / / R_{N} + R_{q^{+}}\right)^{2} \cdot \widetilde{I}_{rV}^{2} + 4k_{B}T \cdot \left(R_{1q} / / R_{N} + R_{q^{+}}\right)\right] \end{split}$$

Die Rauschspannung U_{ra}² am Ausgang erhält man, indem man die Rauschspannungsdichte über den interessierenden Frequenzbereich integriert:

$$U_{ra}^{2}=\int\limits_{f_{1}}^{f_{2}}\widetilde{U}_{ra}^{2}df$$

An dieser Stelle muss jetzt berücksichtigt werden, dass die Verstärkung des OPV endlich ist und bei hohen Frequenzen abnimmt. Mit $\underline{U}_D = \underline{U}_a / \underline{A}_o$ und $\underline{A}_o \approx -j \cdot f_T / f$ kann man jeweils die Grenzfrequenz berechnen. Es ergibt sich für alle 5 Beiträge:

$$\mathbf{f}_{go} = \frac{\mathbf{R}_{1q}}{\mathbf{R}_{1q} + \mathbf{R}_{N}} \cdot \mathbf{f}_{T}$$

Wenn die Ein- und Auskopplung kapazitiv erfolgt, muss auch eine untere Grenzfrequenz f_{gu} berücksichtigt werden.

Mit der oberen und unteren Grenzfrequenz werden die Integrationsgrenzen f_1 und f_2 in effektive Integrationsgrenzen f_1^* und f_2^* umgerechnet, indem man einen Bandpass bzw. Tiefpass 1. Ordnung zugrunde legt:

$$f_1^* = \begin{cases} f_{gu} & \text{wenn } f_1 << f_{gu} \\ \sqrt{2}f_{gu} & \text{wenn } f_1 \approx f_{gu} \\ f_1 & \text{wenn } f_1 >> f_{gu} \end{cases} \qquad f_2^* = \begin{cases} f_2 & \text{wenn } f_2 << f_{go} \\ \frac{\pi}{4}f_{go} & \text{wenn } f_2 \approx f_{go} \\ \frac{\pi}{2}f_{go} & \text{wenn } f_2 >> f_{go} \end{cases}$$

Damit kann das Integral berechnet werden, wenn man für \tilde{U}_{rV} und \tilde{I}_{rV} folgende Näherungen verwendet:

$$\widetilde{U}_{rV}^{2} = \widetilde{U}_{rV\infty}^{2} \cdot \left(1 + \frac{f_{cu}}{f}\right) \qquad \qquad \widetilde{I}_{rV}^{2} = \widetilde{I}_{rV\infty}^{2} \cdot \left(1 + \frac{f_{ci}}{f}\right)$$

Die Kenngrößen $\tilde{U}_{rV\infty}$, f_{cu} , $\tilde{I}_{rV\infty}$, f_{ci} sind oft direkt in den Datenblättern angegeben. Andernfalls müssen sie aus Datenblattkurven für \tilde{U}_{rV} und \tilde{I}_{rV} ermittelt werden.

$$U_{ra}^{2} = \left(1 + \frac{R_{N}}{R_{1q}}\right)^{2} \cdot \left| \begin{array}{c} \widetilde{U}_{rV\infty}^{2} \cdot \left(\Delta f^{*} + f_{cu} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + \\ + \left(R_{1q} / / R_{N} + R_{q+}\right)^{2} \cdot \widetilde{I}_{rV\infty}^{2} \cdot \left(\Delta f^{*} + f_{ci} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + \\ + 4k_{B}T \cdot \left(R_{1q} / / R_{N} + R_{q+}\right) \cdot \Delta f^{*} \end{array} \right| \qquad \text{mit} \quad \Delta f^{*} = f_{2}^{*} - f_{1}^{*}$$

Daraus erhält man das Signal-Rauschverhältnis: $SNR = \frac{U_{Sa,eff}^{2}}{U_{ra}^{2}}$

bzw. den Signal-Rauschabstand: $SNR|_{dB} = 10 \log SNR = 10 \log \frac{U_{Sa,eff}^2}{U_{ra}^2}$

Der Effektivwert U_{Sa,eff} der Signalspannung am Ausgang ergibt sich je nach Verstärkertyp aus dem Effektivwert des Signals U_{S,eff} bzw. I_{S,eff} am Eingang:

Elektrometerverstärker:
$$U_{\text{Sa,eff}}^2 = \left(1 + \frac{R_N}{R_{1q}}\right)^2 \cdot U_{\text{S,eff}}^2$$
 $(R_{q-} = 0 \Rightarrow R_{1q} = R_1)$

$$SNR = \frac{U_{S,eff}^{2}}{\widetilde{U}_{rV\omega}^{2} \left(\Delta f^{*} + f_{cu} \ln \frac{f_{2}^{*}}{f_{1}^{*}} \right) + \left(R_{1} / / R_{N} + R_{q+} \right)^{2} \widetilde{I}_{rV\omega}^{2} \left(\Delta f^{*} + f_{ci} \ln \frac{f_{2}^{*}}{f_{1}^{*}} \right) + 4k_{B}T \left(R_{1} / / R_{N} + R_{q+} \right) \Delta f^{*}}$$

Umkehrverstärker:
$$U_{Sa,eff}^2 = \left(\frac{R_N}{R_{1q}}\right)^2 \cdot U_{S,eff}^2$$
 $(R_{q+} = 0)$

$$SNR = \frac{U_{S,eff}^{2}}{\left(1 + \frac{R_{1q}}{R_{N}}\right)^{2} \tilde{U}_{rV\infty}^{2} \left(\Delta f^{*} + f_{cu} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + R_{1q}^{2} \tilde{I}_{rV\infty}^{2} \left(\Delta f^{*} + f_{ci} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + 4k_{B}T \left(1 + \frac{R_{1q}}{R_{N}}\right) R_{1q} \Delta f^{*}}$$

I/U-Wandler:
$$U_{Sa,eff}^{2} = R_{N}^{2} \cdot I_{S,eff}^{2}$$
 $(R_{q+} = 0, R_{1} = 0 \Rightarrow R_{1q} = R_{q-})$

$$SNR = \frac{I_{S,eff}^{2}}{\frac{\tilde{U}_{rV\infty}^{2}}{\left(R_{q-} / / R_{N}\right)^{2}} \cdot \left(\Delta f^{*} + f_{cu} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + \tilde{I}_{rV\infty}^{2} \cdot \left(\Delta f^{*} + f_{ci} \ln \frac{f_{2}^{*}}{f_{1}^{*}}\right) + \frac{4k_{B}T\Delta f^{*}}{R_{q-} / / R_{N}}$$

TW 28.06.04 ST_3

4 Filter

4.1 Filtercharakteristiken

Übertragungsfunktion eines Tiefpassfilters

Ein ideales Tiefpassfilter (keine Dämpfung im Durchlassbereich, unendliche Dämpfung im Sperrbereich, keine Phasenverzerrung) ist nicht realisierbar. Die Übertragungsfunktion eines realisierbaren Tiefpassfilters hat die allgemeine Form:

$$\underline{H} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{V_{0}}{1 + \alpha_{1}\tilde{s} + \alpha_{2}\tilde{s}^{2} + \ldots + \alpha_{n}\tilde{s}^{n}}$$

ŝ ist die normierte komplexe Frequenz:

$$\widetilde{s} \equiv \frac{j\omega}{\omega_{q}} = j\frac{f}{f_{q}}$$

Die Frequenz f wird dabei auf die sog. Grenzfrequenz f_g normiert, bei der die Amplitude der Übertragungsfunktion um 3dB gegenüber ihrem Wert bei f = 0 abgenommen hat, d.h. die Dämpfung um 3dB zugenommen hat.

 V_0 ist die Verstärkung für f = 0.

Diese Übertragungsfunktion hat die Eigenschaft, dass bei hohen Frequenzen im Nenner der Term mit \tilde{s}^n dominiert. Deshalb nimmt die Dämpfung eines solchen Tiefpasses bei hohen Frequenzen mit n·20dB/Dekade zu, d.h. die Ausgangsamplitude nimmt bei konstanter Eingangsamplitude um einen Faktor 10ⁿ ab, wenn die Frequenz um einen Faktor 10 zunimmt.

Die Ordnung n ist damit der entscheidende Parameter, der zur Erfüllung des Toleranzschemas geeignet gewählt werden muss. Je größer n ist, um so steiler steigt die Dämpfung an und um so leichter ist das Toleranzschema zu erfüllen. Andererseits nimmt auch der schaltungstechnische Aufwand proportional zur Ordnung n zu, so dass in der Praxis n nicht größer als notwendig gewählt wird.

Das Verhalten eines Filters im Zeitbereich wird durch sein Einschwingverhalten auf einen Rechtecksprung am Eingang charakterisiert. Da der Rechtecksprung aus Sinusschwingungen mit allen möglichen Frequenzen besteht und die hohen Frequenzen vom Tiefpass weggedämft werden, ist der Anstieg des Ausgangssignals nicht mehr senkrecht, sondern wird durch die Steigung der gerade noch durchgelassenen Sinusschwingung mit der Frequenz f_g bestimmt. Deshalb beträgt die Anstiegszeit t_r bei allen Tiefpassfiltern näherungsweise:

$$t_r \approx 1/3f_g$$
.

Aber auch die durchgelassenen Sinusschwingungen benötigen eine gewisse Zeit für das Durchlaufen des Filters, die sog. Gruppenlaufzeit:

$$\tau_{g} = -\frac{d\angle \underline{H}}{d\omega}$$

Da die Laufzeit der einzelnen Sinusschwingungen unterschiedlich ist, passen sie am Ausgang nicht mehr genau zusammen und es ergibt sich ein Einschwingverhalten auf das Rechteckplateau. Die reellen Koeffizienten α_i im Nennerpolynom der allgemeinen Tiefpass-Übertragungsfunktion können dazu benutzt werden, um zusätzlich zum Toleranzschema weitere Eigenschaften der Übertragungsfunktion zu optimieren.

In der Literatur werden für die verschiedenen Filtercharakteristiken statt der Koeffizienten α_i üblicherweise die Koeffizienten a_i und b_i bzw. die normierten Polfrequenzen f_{pi}/f_g und die Polgüten q_i der <u>faktorisierten</u> Übertragungsfunktion tabelliert:

$$\underline{H} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{V_{0_{1}} \cdots V_{0_{m}}}{\left(1 + a_{1}\widetilde{s}\right) \cdots \left(1 + a_{m}\widetilde{s} + b_{m}\widetilde{s}^{2}\right)} = \frac{V_{0_{1}} \cdots V_{0_{m}}}{\left(1 + \frac{f_{g}}{f_{p_{1}}}\widetilde{s}\right) \cdots \left(1 + \frac{1}{q_{m}}\frac{f_{g}}{f_{p_{m}}}\widetilde{s} + \left(\frac{f_{g}}{f_{p_{m}}}\right)^{2}\widetilde{s}^{2}\right)}$$

Diese Faktorisierung des Nennerpolynoms in lineare und quadratische Faktoren ist bei reellen Koeffizienten immer eindeutig möglich. Die Faktorisierung der Konstante V_0 kann willkürlich gewählt werden. Ein Koeffizientenvergleich zwischen den beiden faktorisierten Formen liefert folgende Umrechnungsformeln:

$$f_{p_i} = \frac{f_g}{a_i}$$
 bei linearen Faktoren
$$f_{p_i} = \frac{f_g}{\sqrt{b_i}} \qquad q_i = \frac{\sqrt{b_i}}{a_i}$$
 bei quadratischen Faktoren

Die drei wichtigsten Filtercharakteristiken sind:

Butterworth-Charakteristik

Die Butterworth-Charakteristik ist auf einen möglichst flachen Verlauf der Übertragungsfunktion im Durchlassbereich optimiert (s. Tietze/Schenk, Abb. 13.4).

Die Amplitude der Übertragungsfunktion hat bei der Butterworth-Charakteristik eine sehr einfache nichtfaktorisierte Form:

$$\frac{\left|\underline{\underline{U}}_{a}\right|^{2}}{\left|\underline{\underline{U}}_{e}\right|^{2}} = \frac{V_{0}^{2}}{1 + \left(\frac{f}{f_{g}}\right)^{2n}}$$

Für die Koeffizienten a_i und b_i der faktorisierten Form lassen sich geschlossene Ausdrücke angeben. Man kann sie jedoch auch aus entsprechenden Tabellen entnehmen (s. Praktikum bzw. Tietze/Schenk Tab. 13.6).

Die Polfrequenzen aller Faktoren sind gleich der Grenzfrequenz f_g (alle $b_i = 1$). Da die Polfrequenz in der komplexen Ebene den Abstand des Poles zum Ursprung angibt, liegen alle Pole bei Butterworth-Filtern auf einem Kreis mit Radius 1.

Tschebyscheff-Charakteristik

Die Tschebyscheff-Charakteristik ist auf ein möglichst scharfes Abknicken der Übertragungsfunktion bei f_c unter Inkaufnahme einer bestimmten Welligkeit im Durchlassbereich optimiert (s. Tietze/Schenk: Abb. 13.5).

Das Abknicken erfolgt um so steiler, je größer die Welligkeit im Durchlassbereich ist.

Die Koeffizienten a_i und b_i werden Tabellen entnommen (Tietze/Schenk: Tab. 13.6).

Die Polfrequenzen sind hier nicht mehr gleich f_g , sondern kleiner (b_i >1). Sie liegen deshalb in der komplexen Ebene auf einer zur imaginären Achse gestauchten Ellipse.

Das Einschwingverhalten im Zeitbereich ist noch ungünstiger als bei Butterworth-Filtern, weil die Gruppenlaufzeit in der Nähe der Grenzfrequenz stark überhöht ist.

Bessel-Charakteristik

Die Bessel-Charakteristik ist auf einen möglichst flachen Verlauf der Gruppenlaufzeit optimiert. Daraus ergibt sich ein möglichst steiler Anstieg der Sprungantwort im Zeitbereich ohne Überschwingen (s. Tietze/Schenk, Tab. 13.8).

Der Amplitudenverlauf im Frequenzbereich ist runder als bei Butterworth-Filtern (s. Tietze/Schenk, Tab. 13.7).

Die Koeffizienten a_i und b_i können aus entsprechenden Tabellen entnommen werden (Tietze/Schenk: Tab. 13.6).

Die Polfrequenzen sind hier ebenfalls nicht mehr gleich der Grenzfrequenz, sondern größer (b_i <1). Die Pole liegen in der komplexen Ebene auf einer von der imaginären Achse weggedehnten Ellipse.

4.2 Filtertypen

Neben Tiefpassfiltern sind auch andere Filtertypen möglich: Hochpass

Bandpass Bandsperre Allpass

Für diese Filtertypen gilt ebenso wie für Tiefpassfilter, dass sie nicht ideal realisiert werden können. Auch bei ihnen entscheidet im wesentlichen die Filterordnung über die Einhaltung eines vorgegebenen Toleranzschemas.

Die Faktorisierung ist ebenso möglich wie bei Tiefpässen.

Auch die Filtercharakteristik im Durchlassbereich kann wie bei Tiefpässen unterschiedlich optimiert werden.

Um die Berechnung der entsprechenden Koeffizienten zu vereinfachen, geht man von der faktorisierten Übertragungsfunktion eines Tiefpasses aus und führt eine Frequenztransformation aus.

4.2.1 Hochpass

Die Übertragungsfunktion eines Hochpasses der Ordnung n mit einer bestimmten Charakteristik ergibt sich aus der Übertragungsfunktion eines Tiefpasses der Ordnung n mit der gleichen Charakteristik durch folgende Transformation:

$$\underline{\mathrm{H}}_{\mathrm{HP}}(\widetilde{\mathrm{S}}) = \underline{\mathrm{H}}_{\mathrm{TP}}(\frac{1}{\widetilde{\mathrm{S}}})$$

Diese Transformation entspricht einer vertikalen Spiegelung des Bodediagrammes an der Geraden $\tilde{f} = 1$, d.h. $f = f_{\alpha}$:

Beispiele:

$$\begin{split} \underline{H}_{TP} &= \frac{V_{0_i}}{1 + a_i \widetilde{s}} \implies \underline{H}_{HP} = \frac{V_{0_i}}{1 + a_i \frac{1}{\widetilde{s}}} = \frac{V_{0_i} \cdot \frac{1}{a_i} \cdot \widetilde{s}}{1 + \frac{1}{a_i} \cdot \widetilde{s}} \\ \underline{H}_{TP} &= \frac{V_{0_i}}{1 + a_i \widetilde{s} + b_i \widetilde{s}^2} \implies \underline{H}_{HP} = \frac{V_{0_i}}{1 + a_i \frac{1}{\widetilde{s}} + b_i \frac{1}{\widetilde{s}^2}} = \frac{V_{0_i} \cdot \frac{1}{b_i} \cdot \widetilde{s}^2}{1 + \frac{a_i}{b_i} \cdot \widetilde{s} + \frac{1}{b_i} \cdot \widetilde{s}^2} \end{split}$$

4.2.2 Bandpass

Die Übertragungsfunktion eines Bandpasses der Ordnung 2n mit einer bestimmten Charakteristik ergibt sich aus der Übertragungsfunktion eines Tiefpasses der Ordnung n mit der gleichen Charakteristik durch folgende Transformation:

$$\underline{\mathbf{H}}_{\mathsf{HP}}(\widetilde{\mathbf{s}}) = \underline{\mathbf{H}}_{\mathsf{TP}}\left(\frac{1}{\Delta \widetilde{\mathbf{f}}} \cdot \left(\widetilde{\mathbf{s}} + \frac{1}{\widetilde{\mathbf{s}}}\right)\right)$$

Die Grenzfrequenz f_g des Tiefpasses wird die Mittenfrequenz f_m des Bandpasses, auf die alle Frequenzen normiert sind.

$$\begin{split} \Delta \widetilde{f} &= \widetilde{f}_{o} - \widetilde{f}_{u} = \frac{f_{o}}{f_{m}} - \frac{f_{u}}{f_{m}} \text{ ist die normierte Bandbreite des Bandpasses, wobei } \widetilde{f}_{o} = \frac{1}{\widetilde{f}_{u}} \text{ gilt.} \\ \Rightarrow \widetilde{f}_{o,u} &= \sqrt{1 + \left(\frac{\Delta \widetilde{f}}{2}\right)^{2}} \pm \frac{\Delta \widetilde{f}}{2} \end{split}$$

Diese Transformation entspricht einer Abbildung der Tiefpasscharakteristik aus dem Bereich $0 \le \tilde{f} \le 1$ des Bodediagrammes in den Durchlassbereich $\tilde{f}_u \le \tilde{f} \le \tilde{f}_o$ eines Bandpasses. Der Sperrbereich wird in den Bereich $\tilde{f} \ge \tilde{f}_o$ abgebildet und in den Bereich $\tilde{f} \le \tilde{f}_u$ gespiegelt:

Beispiel:

$$\underline{H}_{\mathsf{TP}} = \frac{V_{0_i}}{1 + a_i \widetilde{s}} \qquad \Longrightarrow \qquad \underline{H}_{\mathsf{BP}} = \frac{V_{0_i}}{1 + a_i \frac{1}{\Delta \widetilde{f}} \cdot \left(\widetilde{s} + \frac{1}{\widetilde{s}}\right)} = \frac{V_{0_i} \cdot \frac{\Delta \widetilde{f}}{a_i} \cdot \widetilde{s}}{1 + \frac{\Delta \widetilde{f}}{a_i} \cdot \widetilde{s} + \widetilde{s}^2}$$

4.2.3 Bandsperre

Die Übertragungsfunktion einer Bandsperre der Ordnung 2n mit einer bestimmten Charakteristik ergibt sich aus der Übertragungsfunktion eines Tiefpasses der Ordnung n mit der gleichen Charakteristik durch folgende Transformation:

$$\underline{\mathbf{H}}_{\mathsf{BS}}(\widetilde{\mathbf{s}}) = \underline{\mathbf{H}}_{\mathsf{TP}}\left(\frac{\Delta \widetilde{\mathbf{f}}}{\widetilde{\mathbf{s}} + \frac{1}{\widetilde{\mathbf{s}}}}\right)$$

Die Grenzfrequenz f_g des Tiefpasses wird die Mittenfrequenz f_m der Bandsperre, auf die alle Frequenzen normiert sind.

$$\Delta \tilde{f} = \tilde{f}_{o} - \tilde{f}_{u} = \frac{f_{o}}{f_{m}} - \frac{f_{u}}{f_{m}} \text{ ist die normierte Bandbreite der Bandsperre, wobei } \tilde{f}_{o} = \frac{1}{\tilde{f}_{u}} \text{ gilt.}$$

$$\Rightarrow \tilde{f}_{o,u} = \sqrt{1 + \left(\frac{\Delta \tilde{f}}{2}\right)^{2}} \pm \frac{\Delta \tilde{f}}{2}$$

Diese Transformation entspricht einer Abbildung der Tiefpasscharakteristik aus dem Bereich $0 \leq \widetilde{f} \leq 1$ des Bodediagrammes in den Durchlassbereich $0 \leq \widetilde{f} \leq \widetilde{f}_u$ und gespiegelt in den Bereich $\widetilde{f}_o \leq \widetilde{f} \leq \infty$ einer Bandsperre. Der Sperrbereich wird in den Bereich $\widetilde{f}_u \leq \widetilde{f} \leq \widetilde{f}_o$ abgebildet:

Beispiel:

$$\underline{H}_{TP} = \frac{V_{0_i}}{1 + a_i \widetilde{s}} \qquad \Rightarrow \qquad \underline{H}_{BS} = \frac{V_{0_i}}{1 + a_i \frac{\Delta \widetilde{f}}{\widetilde{s} + \frac{1}{\widetilde{s}}}} = \frac{V_{0_i}}{1 + a_i \frac{\Delta \widetilde{f} \cdot \widetilde{s}}{\widetilde{s}^2 + 1}} = \frac{V_{0_i} \cdot \left(\widetilde{s}^2 + 1\right)}{1 + a_i \cdot \Delta \widetilde{f} \cdot \widetilde{s} + \widetilde{s}^2}$$

4.2.4 Allpass

Die Übertragungsfunktion eines Allpasses hat die Eigenschaft $|\underline{H}_{AP}(\tilde{s})| = V_0$. Ein Allpass bewirkt also nur Phasenänderungen. Diese Eigenschaft kann allgemein dadurch erreicht werden, dass der Zähler das konjugiert Komplexe des Nenners ist, also in faktorisierter Form:

$$\underline{H}_{AP}(\widetilde{s}) = \frac{\underline{U}_{a}}{\underline{U}_{e}} = V_{0} \cdot \frac{(1 - a_{1}\widetilde{s}) \cdots (1 - a_{m}\widetilde{s} + b_{m}\widetilde{s}^{2})}{(1 + a_{1}\widetilde{s}) \cdots (1 + a_{m}\widetilde{s} + b_{m}\widetilde{s}^{2})}$$

Da ein Allpass im allgemeinen als Verzögerungsglied benutzt wird, ist man an einem möglichst flachen Verlauf der Gruppenlaufzeit interessiert. Deshalb werden meist die Koeffizienten der Bessel-Charakteristik verwendet.

Der Kehrwert der Normierungsfrequenz f_0 ist hier die Normierungszeit $T_0 = 1/f_0$.

 T_0 wird so gewählt, dass die Gruppenlaufzeit auf $1/\!\sqrt{2}$ des Wertes bei niedrigen Frequenzen abgesunken ist.

Für die Gruppenlaufzeit gilt:
$$\tau_g = -\frac{d\angle \underline{H}}{d\omega} = -\frac{1}{\omega_0} \cdot \frac{d\angle \underline{H}}{d\frac{\omega}{\omega_0}} = -\frac{T_0}{2\pi} \cdot \frac{d\angle \underline{H}}{d\widetilde{\omega}}$$

Für kleine Frequenzen ist die Phase eines jeden Faktors $\arctan(-a_i\widetilde{\omega}) \approx -a_i\widetilde{\omega}$, so dass jeder Faktor zur Gruppenlaufzeit $\frac{T_0}{2\pi} \cdot a_i$ beiträgt. Da jeder Faktor zweimal vorkommt, ergibt sich für die Verzögerungszeit bei tiefen Frequenzen:

$$\tau_g \approx \frac{T_0}{\pi} \cdot \sum_i a_i$$

Die gewünschte Verzögerungszeit bestimmt die Ordnung des Allpasses.

4.3 Filter-Schaltungen

4.3.1 Übersicht (s. Folie)

4.3.2 Passive RC- und LC-Filterschaltungen

Zur Dimensionierung der Schaltungen berechnet man den Frequenzgang wie üblich mit komplexer Wechselstromrechnung und ersetzt im Ergebnis j ω durch $2\pi f_g \cdot \tilde{s}$. Durch einen Koeffizientenvergleich mit dem transformierten Frequenzgang in Kap. 4.2 können die Bauelementwerte ermittelt werden.

RC-Tiefpass 1. Ordnung:

Frequenzgang: $\frac{\underline{U}_{a}}{\underline{U}_{a}} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + 2\pi f_{a}RC\tilde{s}}$

Dimensionierung: $\mathbf{R} \cdot \mathbf{C} = \frac{\mathbf{a}_i}{2\pi f_g}$ $V_{\mathbf{0}_i} = 1$

RC-Hochpass 1. Ordnung:

Frequenzgang: $\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{j\omega RC}{1 + j\omega RC} = \frac{2\pi f_{g}RC\tilde{s}}{1 + 2\pi f_{g}RC\tilde{s}}$

Dimensionierung: $R \cdot C = \frac{1}{2\pi f_g a_i}$ $V_{0_i} = 1$

RC-Allpass 1. Ordnung:

Frequenzgang: $\frac{\underline{U}_{a}}{U_{a}} = \frac{1 - j\omega RC}{1 + j\omega RC} = \frac{1 - 2\pi f_{g}RC\tilde{s}}{1 + 2\pi f_{g}RC\tilde{s}}$

Dimensionierung: $\mathbf{R} \cdot \mathbf{C} = \frac{\mathbf{a}_i}{2\pi f_g}$ $V_{0_i} = 1$

LC-Tiefpass 2. Ordnung: Frequenzgang:

 $\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{1}{1 + j\omega RC + (j\omega)^{2}LC} = \frac{1}{1 + 2\pi f_{g}RC\widetilde{s} + (2\pi f_{g})^{2}LC\widetilde{s}^{2}}$

Dimensionierung: $L \cdot C = \frac{b_i}{(2\pi f_g)^2}$ $R \cdot C = \frac{a_i}{2\pi f_g}$ $V_{o_i} = 1$

4.3.3 Aktive RC-Filter

Passive Filterschaltungen haben zwei Nachteile:

- Wegen des endlichen Ein- und Ausgangswiderstandes beeinflussen sich bei einer Kettenschaltung die einzelnen Teilfilter, so dass eine einfache Realisierung des faktorisierten Gesamtfilters nur mit Fehlern möglich ist. Dieses Problem lässt sich jedoch durch die Berücksichtigung der Beeinflussung mit Hilfe von Dimensionierungssoftware lösen.
- Die Induktivitäten werden bei niedrigen Frequenzen unhandlich groß und sind mit großen Verlusten behaftet.

Beide Problem können mit RC-OPV-Schaltungen gelöst werden. Allerdings haben auch diese Schaltungen einen Nachteil:

• Da die Verstärkung des OPV mit zunehmender Frequenz abnimmt, ist der nutzbare Frequenzbereich auf niedrige Frequenzen beschränkt und zwar umso mehr je höher die Polgüte der Filter ist

Aktiver RC-Tiefpass 1. Ordnung:

Frequenzgang:
$$\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{1 + \frac{R_{2}}{R_{1}}}{1 + j\omega RC} = \frac{1 + \frac{R_{2}}{R_{1}}}{1 + 2\pi f_{g} RC\tilde{s}}$$

Dimensionierung: $\mathbf{R} \cdot \mathbf{C} = \frac{\mathbf{a}_i}{2\pi f_g} \quad \frac{\mathbf{R}_2}{\mathbf{R}_1} = \mathbf{V}_{\mathbf{0}_i} - 1$

Aktiver RC-Hochpass 1. Ordnung:

Frequenzgang:

$$\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{\left(1 + \frac{\underline{R}_{2}}{\underline{R}_{1}}\right) \cdot j \omega RC}{1 + j \omega RC} = \frac{\left(1 + \frac{\underline{R}_{2}}{\underline{R}_{1}}\right) \cdot 2\pi f_{g} RC\tilde{s}}{1 + 2\pi f_{g} RC\tilde{s}}$$

Dimensionierung: $\mathbf{R} \cdot \mathbf{C} = \frac{1}{2\pi f_g a_i}$ $\frac{\mathbf{R}_2}{\mathbf{R}_1} = \mathbf{V}_{0_i} - 1$

Grenzfrequenz:
$$f_{gk} = \frac{R_1}{R_1 + R_2} \cdot f_T$$

Aktiver RC-Tiefpass 1. Ordnung (invertierend):

Frequenzgang:
$$\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{-\frac{R}{R_{1}}}{1+j\omega RC} = \frac{-\frac{R}{R_{1}}}{1+2\pi f_{g}RC\tilde{s}}$$

Dimensionierung: $\mathbf{R} \cdot \mathbf{C} = \frac{\mathbf{a}_i}{2\pi f_g} \quad \frac{\mathbf{R}}{\mathbf{R}_1} = -\mathbf{V}_{0_i}$

 $Grenzfrequenz: \quad f_{gk} = \frac{R_1}{R_1 + R} \cdot f_T$

Aktiver RC-Hochpass 1. Ordnung (invertierend):

Frequenzgang:
$$\frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{-\frac{R_{2}}{R} \cdot j\omega RC}{1 + j\omega RC} = \frac{-\frac{R_{2}}{R} \cdot 2\pi f_{g} RC\tilde{s}}{1 + 2\pi f_{g} RC\tilde{s}}$$

Dimensionierung:
$$R \cdot C = \frac{1}{2\pi f_{g} a_{i}} \quad \frac{R_{2}}{R} = -V_{0_{i}}$$

Grenzfrequenz: Für maximale Grenzfrequenz f_{gk}^{opt} müssen R, R₂ und C zusätzlich die beim Differentiator beschriebene Bedingung erfüllen.

Aktiver RC-Allpass 1. Ordnung:

Frequenzgang: $\frac{U_{a}}{U_{e}} = \frac{1 - j\omega RC}{1 + j\omega RC} = \frac{1 - 2\pi f_0 RC\tilde{s}}{1 + 2\pi f_0 RC\tilde{s}}$ Dimensionierung: $R \cdot C = \frac{a_i}{2\pi f_0}$ $V_{0_i} = 1$ Grenzfrequenz: $f_{gk} = \frac{f_T}{2}$

R₁

С

<u>U</u>a

Aktives Filter mit Einfach-Mitkopplung (Sallen-Key-Filter)

Je nach Belegung der Admittanzen mit Widerständen oder Kapazitäten ist dies der Frequenzgang eines Tiefpasses, Hochpasses oder Bandpasses 2. Ordnung:

Filtertyp	Schaltung	<u>Y</u> 1	<u>Y</u> 2	<u>Y</u> 3	<u>Y</u> 4	<u>Y</u> 5
Tiefpass		$\frac{1}{R_1}$	$\frac{1}{R_2}$	$\frac{1}{R_3}$	jωC₄	jωC₅
Hoch- pass		jωC ₁	$\frac{1}{R_2}$	jωC ₃	$\frac{1}{R_4}$	$\frac{1}{R_5}$
Band- pass		$\frac{1}{R_1}$	jωC₂	jωC₃	$\frac{1}{R_4}$	$\frac{1}{R_5}$

Dimensionierung für Tiefpass mit $\alpha = 1$ siehe Praktikumsunterlagen.

Aktives Filter mit Mehrfach-Gegenkopplung

$$\underline{H}_{k} = \frac{\underline{U}_{a}}{\underline{U}_{e}} = \frac{-\underline{Y}_{1} \cdot \underline{Y}_{3}}{\underline{Y}_{5} \cdot \left(\underline{Y}_{1} + \underline{Y}_{2} + \underline{Y}_{3} + \underline{Y}_{4}\right) + \underline{Y}_{3} \cdot \underline{Y}_{4}}$$

Je nach Belegung der Admittanzen mit Widerständen oder Kapazitäten ist dies der Frequenzgang eines Tiefpasses, Hochpasses oder Bandpasses 2. Ordnung:

Filtertyp	Schaltung	<u>Y</u> 1	<u>Y</u> 2	<u>Y</u> 3	<u>Y</u> 4	<u>Y</u> 5
Tiefpass		$\frac{1}{R_1}$	jωC₂	$\frac{1}{R_3}$	$\frac{1}{R_4}$	jωC ₅
Hoch- pass		jωC ₁	$\frac{1}{R_2}$	jωC ₃	jωC₄	$\frac{1}{R_5}$
Band- pass		$\frac{1}{R_1}$	$\frac{1}{R_2}$	jωC ₃	jωC₄	$\frac{1}{R_5}$

Dimensionierung eines Tiefpasses mit Mehrfach-Gegenkopplung:

/

$$\begin{aligned} \text{W\"ahle } C_2 \text{ und } C_5 \text{ mit} & \frac{C_2}{C_5} \ge \frac{4 \cdot b_i \cdot \left(1 - V_{0_i}\right)}{a_i^2} \implies \qquad \text{K} = 1 - \sqrt{1 - \frac{4 \cdot C_5 \cdot b_i \cdot \left(1 - V_{0_i}\right)}{C_2 \cdot a_i^2}} \\ \Rightarrow R_3 = \frac{b_i}{a_i \pi f_g C_2 \cdot \text{K}} \qquad \qquad R_4 = \frac{a_i \cdot \text{K}}{4 \pi f_g C_5} \qquad \qquad R_1 = \frac{R_4}{-V_{0_i}} \end{aligned}$$

4.3.4 Integrierte RC-Universalfilter

Man kann auch ein Universalfilter realisieren, indem man zwei Integratoren und ein bzw. zwei Addierer zusammenschaltet. Eine solche Schaltung kann gleichzeitig einen quadratischen Faktor für alle vier Filtertypen realisieren und an vier Ausgängen zur Verfügung stellen.

Universalfilter mit invertierenden Integratoren

Die Übertragungsfunktionen zwischen dem Eingang und den vier Ausgängen erhält man aus folgenden Beziehungen durch Eliminieren von jeweils drei Ausgängen:

$$\underline{U}_{BS} = -\underline{U}_{BP} - \frac{R_1}{R_2} \cdot \underline{U}_{e} \qquad \qquad \underline{U}_{HP} = -\frac{R_3}{R_1} \cdot \underline{U}_{TP} - \frac{R_3}{R_4} \cdot \underline{U}_{BS}$$
$$\underline{U}_{BP} = -\frac{1}{j\omega\tau} \cdot \underline{U}_{HP} \qquad \qquad \underline{U}_{TP} = -\frac{1}{j\omega\tau} \cdot \underline{U}_{BP}$$

$$\frac{\underline{U}_{\text{TP}}}{\underline{U}_{\text{e}}} = \frac{\frac{\overline{R_1}^2}{\overline{R_2} \cdot \overline{R_4}}}{1 + \frac{\overline{R_1}}{\overline{R_4}} \cdot j\omega\tau + \frac{\overline{R_1}}{\overline{R_3}} \cdot (j\omega\tau)^2} = \frac{\frac{\overline{R_1}^2}{\overline{R_2} \cdot \overline{R_4}}}{1 + \frac{\overline{R_1}}{\overline{R_4}} \cdot \omega_g\tau \cdot \widetilde{s} + \frac{\overline{R_1}}{\overline{R_3}} \cdot (\omega_g\tau)^2 \cdot \widetilde{s}^2}$$

$$\frac{\underline{U}_{HP}}{\underline{U}_{e}} = \frac{\frac{\underline{R}_{1} \cdot \underline{R}_{3}}{R_{2} \cdot R_{4}}}{1 + \frac{\underline{R}_{3}}{R_{4}} \cdot \frac{1}{j\omega\tau} + \frac{\underline{R}_{3}}{R_{1}} \cdot \frac{1}{(j\omega\tau)^{2}}} = \frac{\frac{\underline{R}_{1} \cdot \underline{R}_{3}}{1 + \frac{\underline{R}_{3}}{R_{4}} \cdot \frac{1}{\omega_{g}\tau} \cdot \frac{1}{\widetilde{s}} + \frac{\underline{R}_{3}}{R_{1}} \cdot \frac{1}{(\omega_{g}\tau)^{2}} \cdot \frac{1}{\widetilde{s}^{2}}}$$

$$\frac{\underline{U}_{BP}}{\underline{U}_{e}} = \frac{-\frac{\overline{R_{1}^{2}}}{R_{2} \cdot R_{4}} \cdot j\omega\tau}{1 + \frac{R_{1}}{R_{4}} \cdot j\omega\tau + \frac{R_{1}}{R_{3}} \cdot (j\omega\tau)^{2}} = \frac{-\frac{\overline{R_{1}^{2}}}{R_{2} \cdot R_{4}} \cdot \omega_{m}\tau \cdot \tilde{s}}{1 + \frac{R_{1}}{R_{4}} \cdot \omega_{m}\tau \cdot \tilde{s} + \frac{R_{1}}{R_{3}} \cdot (\omega_{m}\tau)^{2} \cdot \tilde{s}^{2}}$$

$$\frac{\underline{U}_{BS}}{\underline{U}_{e}} = \frac{-\frac{R_{1}}{R_{2}} \cdot \left(1 + \frac{R_{1}}{R_{3}} \cdot \left(j\omega\tau\right)^{2}\right)}{1 + \frac{R_{1}}{R_{4}} \cdot j\omega\tau + \frac{R_{1}}{R_{3}} \cdot \left(j\omega\tau\right)^{2}} = \frac{-\frac{R_{1}}{R_{2}} \cdot \left(1 + \frac{R_{1}}{R_{3}} \cdot \left(\omega_{m}\tau\right)^{2} \cdot \tilde{s}^{2}\right)}{1 + \frac{R_{1}}{R_{4}} \cdot \omega_{m}\tau \cdot \tilde{s} + \frac{R_{1}}{R_{3}} \cdot \left(\omega_{m}\tau\right)^{2} \cdot \tilde{s}^{2}}$$

Die Dimensionierung wird besonders einfach, wenn man $\tau = \frac{1}{2\pi f_g}$ bzw. $\tau = \frac{1}{2\pi f_m}$

wählt. Ein Widerstand ist wählbar, z.B. R₁. Die übrigen Widerstände erhält man durch Koeffizientenvergleich:

Tiefpaß:	Hochpaß:	Bandpaß/Bandsperre:
$R_3 = R_1/b_i$	$R_3 = R_1 \cdot b_i$	$R_{3} = R_{1}$
$R_4 = R_1/a_i$	$R_4 = R_1 \cdot b_i / a_i$	$R_4 = R_1 \cdot a_i / \Delta \tilde{f}$
$R_2 = R_1 \cdot a_i \big/ V_{0_i}$	$R_2 = R_1 \cdot a_i / V_{0_i}$	$R_2 = -R_1 \big/ V_{0_i}$

Solche Schaltungen sind integriert erhältlich und werden nur noch mit Widerständen beschaltet.

Beispiele: MAX274/275 von Maxim UAF42 von Burr Brown AF100-Serie von National Semiconductor LTC1562 von Linear Technology Universalfilter mit nichtinvertierenden SC-Integratoren ("Biquad")

In Switched-Capacitor-Technik sind nicht-invertierende Integratoren einfach realisierbar. Deshalb wird meist folgende Universalfilter-Schaltung verwendet:

Die Dimensionierung wird besonders einfach, wenn man $\tau = \frac{1}{2\pi f_g}$ bzw. $\tau = \frac{1}{2\pi f_m}$ wählt. Ein Widerstand ist wählbar, z.B. R₁. Die übrigen Widerstände erhält man durch Koeffizientenvergleich:

Tiefpaß:	Hochpaß:	Bandpaß:
$R_3 = R_1/b_i$	$R_3 = R_1 \cdot b_i$	$R_3 = R_1$
$R_4 = R_1/a_i$	$R_4 = R_1 \cdot b_i / a_i$	$R_4 = R_1 \cdot a_i / \Delta \tilde{f}$
$\mathbf{R_2} = -\mathbf{R_1}/\mathbf{V_{0_i}}$	$\boldsymbol{R_2} = -\boldsymbol{R_1} \cdot \boldsymbol{b}_i \big/ \boldsymbol{V_{0_i}}$	$\mathbf{R}_{2} = -\mathbf{R}_{1} \cdot \mathbf{a}_{i} / \left(\mathbf{V}_{0_{i}} \cdot \Delta \widetilde{\mathbf{f}} \right)$

Übungsblatt 1

- a) Wie breit muss eine Leiterbahn auf einer Signallage gewählt werden, damit der Wellenwiderstand der Leitung 100Ω beträgt?
- b) Wie groß ist die spezifische Laufzeit einer solchen Leitung?
- c) Wie groß ist der Induktivitäts- und Kapazitätsbelag der Leitung?
- d) Muss auf einer Europakarte ein Leitungsabschluss erwogen werden, wenn die Signale Anstiegs- bzw. Abfallzeiten von 1ns besitzen?
- 2) Entwurf einer Audio-Endstufe mit MOSFET's im AB-Betrieb Spezifikationen:max. Ausgangsleistung 20W an Lastimpedanz 4Ω max. Umgebungstemperatur 70 ℃

Frequenzbereich 20Hz - 16kHz Spannungsverstärkung 1

- a) Wie groß ist die maximale Ausgangsspannung?
- b) Wie groß ist der maximale Ausgangsstrom?
- c) Wie groß müssen die Spannungsversorgungen V_+ , V_{Q_+} und V_{T_+} mindestens gewählt werden, wenn der n-Kanal-MOSFET BUZ71 verwendet werden soll?
- d) Warum reichen diese Mindestwerte in der Praxis nicht aus?
- e) Als OPV wird der LF411 gewählt, dessen maximale Ausgangsspannung bei V₊ = 20V ca. 18V beträgt. Wie groß ist die Gate-Source-Spannung bei Verwendung von 5 Bias-Dioden pro Transistor ($U_S \approx 0.6V$) bei der maximalen Ausgangsspannung?
- f) Berechnen Sie den Steuerparameter KP·W/L aus der im Datenblatt angegebenen Steilheit gfs
- g) Nehmen Sie an, dass der MOSFET bei maximaler Ausgangsspannung im linearen Bereich arbeitet und berechnen Sie mit dem Steuerparameter KP·W/L die Größe der Drain-Source-Spannung und die sich daraus ergebende Versorgungsspannung V_{T+}
- h) Wie groß darf der thermische Widerstand des Kühlkörpers höchstens gewählt werden?
- i) Wiederholen Sie c) bis h) für negative Aussteuerung, wenn der p-Kanal-MOSFET BUZ171 verwendet wird
- j) Dimensionieren Sie Bootstrap-Kapazitäten und Vorwiderstände, damit auf die Betriebsspannungen $V_{Q_{+}}$ und $V_{Q_{-}}$ verzichtet werden kann.
- k) Überprüfen Sie, ob die Geschwindigkeit des OPV ausreicht
- 3) Der Spannungsregler L7809CV im Layout aus dem Praktikum besitzt eine Dropout-Spannung von 2V, einen maximalen Strom von 1A und eine maximale Sperrschichttemperatur von 125℃. Bei geeigneter Dimensionierung der Kühlfläche beträgt der thermische Widerstand zwischen Sperrschicht und Umgebung ca. 20K/W. Der Verstärker wird bei einer Umgebungstemperatur von maximal 50 °C betrieben. In welchem Bereich darf die Versorgungsspannung DC_IN der Platine liegen, wenn der Verstärker maximal 1.1W abgibt und einen Wirkungsgrad von 50% besitzt?